
   

  

Coding Guidelines 
and Quick Start Tips 

for 
Software Development 

Version 0.7 (in progress) 
 

Includes: C, Python, and some Fortran, Assembler, and C++ 
 

File: “C:\Travel_Briefcase\EricSchool\Research\Coding Guidelines.doc” 

Last modified by Eric L. Michelsen 

 

The goal of coding guidelines is to improve the productivity of all software development:  
Easier, faster, more reliable. 

 

1. Source code is a language for people, not just computers. 

2. Comment as you go.  Don’t wait for later. 

3. Ask yourself: “How will the next person know that?” 

 

“There is much more to programming than simply writing the code.”    
 - T. M. R. Ellis, Fortran 90 Programming,  Addison-Wesley, 1994, p693.  

 
“Whenever possible, ignore the coding standards currently in use by thousands of 
developers in your project’s target language and environment.”  
 - Roedy Green, How To Write Unmaintainable Code,  www.strauss.za.com/sla/code_std.html  

 

“Debugging is twice as hard as writing the code in the first place.  Therefore, if you write 
the code as cleverly as possible, you are, by [implication], not smart enough to debug it.”  
- Brian W. Kernighan 

 

“These guidelines will make everyone’s life easier, even yours.”  - Eric L. Michelsen 

http://www.strauss.za.com/sla/code_std.html


 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 2 of 66 

Table of Contents 
1. Why Coding Guidelines? ................................................................................................................ 5 

1.1 C Guidelines Summary.............................................................................................................. 6 
1.2 Document Overview.................................................................................................................. 9 

1.2.1 Scope ................................................................................................................................ 9 
1.2.2 Notation ............................................................................................................................ 9 
1.2.3 Terminology...................................................................................................................... 9 

1.3 Issues ........................................................................................................................................ 9 
1.3.1 Open Issues ....................................................................................................................... 9 

1.4 Assumptions ............................................................................................................................. 9 
1.5 Definitions, Abbreviations, Acronyms ..................................................................................... 10 
1.6 References .............................................................................................................................. 11 
1.7 Revision History ..................................................................................................................... 11 

2. ‘C’ Coding Guidelines................................................................................................................... 12 
2.1 General Guidelines.................................................................................................................. 12 

2.1.1 Templates........................................................................................................................ 12 
2.1.2 Grandfathering................................................................................................................. 12 
2.1.3 No Warnings ................................................................................................................... 12 

2.2 C++ and C99 Compatibility..................................................................................................... 13 
2.2.1 Enums As Arguments ...................................................................................................... 14 

2.3 Code Organization................................................................................................................... 14 
2.4 Directory Layout ..................................................................................................................... 15 
2.5 File Layout.............................................................................................................................. 16 

2.5.1 File Layout: *.c Files ....................................................................................................... 16 
2.5.2 File Layout: *.h (Header) Files......................................................................................... 18 

2.6 Functions ................................................................................................................................ 19 
2.6.1 Function Calls.................................................................................................................. 19 
2.6.2 Function Headers and Footers .......................................................................................... 19 
2.6.3 Function Naming ............................................................................................................. 20 
2.6.4 Function Prototypes ......................................................................................................... 20 

2.7 Typedefs ................................................................................................................................. 22 
2.8 Variables................................................................................................................................. 22 

2.8.1 Variable Names ............................................................................................................... 23 
2.8.2 Variable Prefixes and Suffixes ......................................................................................... 23 
2.8.3 Global/Shared Definitions................................................................................................ 24 
2.8.4 Local Definitions ............................................................................................................. 24 
2.8.5 Bit Fields......................................................................................................................... 24 

2.9 Constants & Enums................................................................................................................. 24 
2.9.1 Run Time Constants......................................................................................................... 25 

2.10 Statement Formatting .............................................................................................................. 25 
2.10.1 Indentation ...................................................................................................................... 25 
2.10.2 Tabs ................................................................................................................................ 25 
2.10.3 Line Length ..................................................................................................................... 26 
2.10.4 Braces ............................................................................................................................. 26 
2.10.5 Comments ....................................................................................................................... 26 
2.10.6 Conventionalized Comments............................................................................................ 27 
2.10.7 Operators......................................................................................................................... 28 
2.10.8 Assignments within Other Statements .............................................................................. 29 
2.10.9 White Space .................................................................................................................... 29 
2.10.10 Switch Statements............................................................................................................ 29 
2.10.11 Checking Error Returns.................................................................................................... 30 
2.10.12 Return Statements............................................................................................................ 30 
2.10.13 goto ................................................................................................................................. 31 
2.10.14 #if Pre-Processor Directive............................................................................................... 32 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 3 of 66 

2.10.15 #error Pre-Processor Directive ......................................................................................... 32 
2.10.16 Testing for Null Pointers .................................................................................................. 32 
2.10.17 Use sizeof() and offsetof()................................................................................................ 33 

2.11 Macro Functions and Inline Functions ..................................................................................... 33 
2.11.1 Multi-statement Macros ................................................................................................... 33 
2.11.2 “inline” Functions ............................................................................................................ 34 

2.12 Network and Inter-Processor Communication .......................................................................... 34 
2.12.1 Packing............................................................................................................................ 34 
2.12.2 Byte Order Independence................................................................................................. 35 
2.12.3 Byte Alignment ............................................................................................................... 35 
2.12.4 No Inter-Processor Bit Fields ........................................................................................... 36 

2.13 Diagnostic Code...................................................................................................................... 36 
2.13.1 ASSERT.......................................................................................................................... 36 
2.13.2 Debug Code..................................................................................................................... 37 

2.14 Tips & Gotchas ....................................................................................................................... 38 
2.14.1 scanf() Problems.............................................................................................................. 38 
2.14.2 Huge Object Files ............................................................................................................ 38 
2.14.3 Null Procedure Bodies ..................................................................................................... 38 
2.14.4 'Make' can compile wrong file.......................................................................................... 39 
2.14.5 Comparing Macro Constants............................................................................................ 39 
2.14.6 Misleading vsprintf output ............................................................................................... 39 
2.14.7 Use ‘const’ for strings instead of #define.......................................................................... 39 

3. C++ Coding ................................................................................................................................... 40 
3.1 C++ Coding Guidelines ........................................................................................................... 40 
3.2 Object Oriented Programming ................................................................................................. 40 
3.3 Type Casting........................................................................................................................... 41 

4. Python Tips and Coding Guidelines ............................................................................................. 42 
4.1 Why Python?........................................................................................................................... 42 
4.2 Getting Started With Python: Quick Tips ................................................................................. 42 

4.2.1 Help on Installable Packages............................................................................................ 42 
4.2.2 Strings, Lists, Tuples, and Sequences ............................................................................... 42 
4.2.3 Common String Methods ................................................................................................. 43 
4.2.4 A Simple Text Filter Example.......................................................................................... 43 
4.2.5 A Simple Example: Command-line Parameters, Files, Arrays, and Plotting....................... 44 
4.2.6 Memory Leaks................................................................................................................. 46 

4.3 Style Guide ............................................................................................................................. 47 
4.3.1 Guido van Rossum’s Style Guide ..................................................................................... 47 
4.3.2 Code lay-out .................................................................................................................... 48 
4.3.3 Encodings (PEP 263) ....................................................................................................... 49 
4.3.4 Imports............................................................................................................................ 49 
4.3.5 Whitespace in Expressions and Statements ....................................................................... 50 
4.3.6 Comments ....................................................................................................................... 51 
4.3.7 Documentation Strings..................................................................................................... 52 
4.3.8 Version Bookkeeping....................................................................................................... 52 
4.3.9 Naming Conventions ....................................................................................................... 52 
4.3.10 Programming Recommendations...................................................................................... 55 

4.4 Optimization and Profiling ...................................................................................................... 57 
5. Fortran Coding Guidelines ........................................................................................................... 58 

5.1.1 Use Fortran 90, or Higher ................................................................................................ 58 
5.1.2 Avoid Explicit Interfaces ................................................................................................. 58 
5.1.3 Fortran Include Files........................................................................................................ 58 
5.1.4 Multi-file Modules........................................................................................................... 58 
5.1.5 A Legitimate Use of EQUIVALENCE ............................................................................. 59 
5.1.6 Avoid Renaming MODULE Entities ................................................................................ 59 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 4 of 66 

5.2 Upgrading Old F77 Code......................................................................................................... 59 
5.2.1 Freely Upgrade to Fortran 90 ........................................................................................... 59 
5.2.2 Replace COMMON with MODULEs; Avoid EQUIVALENCE........................................ 60 

5.3 Gotchas, Tips, and Tricks ........................................................................................................ 60 
5.3.1 Local Initializers Only Work Once ................................................................................... 60 

6. Assembly Coding Guidelines ........................................................................................................ 61 
6.1 Assembly File Headers............................................................................................................ 61 
6.2 Assembly-Callable Routines.................................................................................................... 61 
6.3 C-Callable Routines ................................................................................................................ 62 

7. Integrating 3rd Party Software...................................................................................................... 63 
8. Appendix: EXPORTED Macro for C........................................................................................... 64 
9. Stuff Needing Fixing ..................................................................................................................... 66 

9.1.1 Directory Layout.............................................................................................................. 66 
 

Acknowledgement 
We thank Copper Mountain Networks for their support in the preparation of this document. 

 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 5 of 66 

1. Why Coding Guidelines? 
Why?  Because: 

Code is read much more often than it is written. 

Coding guidelines are a tool for cost-effective engineering.  (They are not a religion or an art form.)  
When evaluating coding guidelines, it is important to focus on the utility of the guidelines, and let go of 
things that we “like” or are “used to.” 

1.  The goal of coding guidelines is to improve the productivity of all software development:  
Easier, more reliable, faster. 

While many coding styles are efficient and maintainable, agreeing on this set of guidelines allows the 
entire team to work cohesively.  Close adherence to these guidelines is essential to producing software that 
is consistent project-wide and maintainable by diverse team members. 

Of course, no finite set of guidelines is applicable to all situations.  There will be rare times when 
developers consciously and properly diverge from these guidelines.  When such cases arise, include an 
explanatory comment (to facilitate the review process) . 

2.  Comment as you go.  It only takes a few seconds.  Don’t wait for later. 

The code will never be fresher in your mind than right now.  The file is already open in the editor.  
This is the most effective time there will be to comment your code.  It only takes a few seconds.  And you 
know you won’t get around to it later. 

3.  Source code is a language for people, not just computers. 

Source code has two purposes: (1) To instruct a computer what to do, and (2) to instruct a human 
developer/reviewer what the code is doing.  Source code is as much a language for people as it is for the 
computer.  Coding guidelines are tugged in two opposing directions.  Coding guidelines which are too strict 
limit the designer’s flexibility to express design concepts in the source code.  Coding guidelines that are too 
“loose” allow too much confusion in the code. 

4.  Ask yourself: “How will the next person know that?” 

Things that were hard for you to figure out are hard for other people, too.  Comment what you learned, 
what you know, what your code is doing, and how it is doing it. 

When documenting designs, a small number of large documents is much easier to search 
through and maintain than a large number of small documents. 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 6 of 66 

1.1 C Guidelines Summary 
Here’s a summary of the major guidelines; details and justifications are in the rest of the document. 

General Guidelines 

 It's not always the best idea to design something for all situations or all time, because it may be a 
waste of resources.  However, it's usually pretty easy to test for the known limitation, such as 
if(year >= 2009)  print error message, and terminate. 

 All code should be compiled with an ANSI C Compiler to ensure compatibility (at least from the 
compiler’s point of view) with the ANSI C standard.  The INLINE macro is a safe extension. 

 Be C++ compatible: do not use C++ reserved words.  Do not typedef structure tag names, but do 
typedef structures. 

 Always start new source files with the latest version of the file templates, template.c and 
template.h.  Don’t copy old source files, as things may have been improved since then. 

 Old code may be grandfathered, but updating to the guidelines is encouraged. 

 A quality requirement for code is no lint/compiler/linker warnings.   

 Developers should not use Hungarian notation for identifier names.   

 Do not use double underscore to start any identifier or macro; these are reserved for the compiler. 

 When documenting designs, a small number of large documents is much easier to search through 
and maintain than a large number of small documents. 

Code Organization 

 Group functions so as to maximize the amount of 'local' data and minimize the amount of 'shared' 
and 'global' data.  Therefore, group functions because they reference the same data, rather 
than because they perform similar kinds of functions. 

 Programs with multiple files and multiple functions should be organized into modules.  A module 
is a file or set of files that form a process or library function.  All files in a module should be in a 
single directory, except header files shared with other modules, which are in a common directory. 

 Header files that are used by files in only one directory should be put in that directory.  Header 
files used by files in multiple directories should be stored in the lowest parent directory of all 
software modules that include them. 

 Each file in a given module should be prefixed with a short prefix unique to the module. 

 Include files that contain global declarations that are shared between modules (i.e. not within a 
module) should have their file names prefixed with “gi” (Global Include) to indicate that they are 
shared.  This should alert the developer to be especially careful when making changes. 

File Layout 

 All functions and data that are used outside the module (i.e. global) should be prefixed with the 
same prefix that identifies the module. 

 Files should define functions in top-down order, i.e., the highest level functions first, because top-
down is usually the easiest way to learn a new module.  This organization means local (forward) 
prototypes are needed, because low level functions are defined after they are referenced. 

 Each source file should begin with a header comment block that indicates the file name, the 
module that the file belongs to, and the general purpose of the functions in the file.  This comes for 
free by using the file templates (template.c and template.h) for new source files. 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 7 of 66 

 Put comments on your #include lines to document the most important identifiers supplied by the 
header file.  This helps avoid #include bloat: 
#include <time.h> // clock(), time_t 
#include "apollo.h " // card slots 

  ‘C’ Library header files, or OS header files should be included with <> (angle brackets) to 
indicate they are library files.  Project generated header files should be included using " " (quotes). 

 Header files define the interfaces for a module.  Header files should include the minimum amount 
of information (Mandatory typedefs, prototypes, constants, structure declarations, global data 
definitions) that is needed by external modules to use public functions.  Private typedefs, 
prototypes, etc. should be in the *.c file, not the *.h file.   

 Developers should avoid including header files within header files.   

Functions 

 All function calls MUST refer to previously declared functions (C99 and C++ mandate this). 

 Each function should begin with a header comment block which conveys information about the 
purpose of the function, the expected inputs, and the outputs. 

 The scope of all functions should be declared using the macros PUBLIC, PRIVATE, or SHELL. 

 Functions that act on objects should have a name giving the object type first, then the operation, 
e.g., ‘date_increment’, rather than ‘increment_date’. 

 The function name should reflect how the caller uses its return value.  E.g., a function whose job it 
is to determine whether a file name is valid, and return a boolean result, should be called 
something like ‘filename_is_valid’ rather than ‘validate_filename’. 

 Private function prototypes should be at the top of the *.c file, to serve as forward declarations. 

 You should qualify pointer parameters to functions with the following modifiers to help create self 
documenting code:  const, OUT, INOUT. 

 Arithmetic macro function definitions should enclose all the arguments in parentheses, and 
themselves be enclosed in overall parentheses. 

Typedefs 

 Structures should be typedef’d to allow users to reference the typedef name directly.  (C++ classes 
should not be typedef’d, since the classname is already effectively a typedef.) 

 Use the project predefined typedefs (comtypes.h) in place of most of the standard C data types: 
uint8, int8, uint16, int16, uint32, int32, uint64, int64, bool.  
These are consistent with Python’s numpy types (http://scipy.org/Tentative_NumPy_Tutorial).  

Variables 

 Each variable declaration should have a comment describing its purpose, if not self-explanatory.   

 There should be no single character variable names.  Single character variable names are hard to 
search for in code and not descriptive enough to be useful.   

Constants 

 Let the compiler do the work: when coding compile time constants which are calculated, write 
them as an arithmetic expression that conveys their meaning and derivation: 
#define TDC_SLOT_BITS (TDC_SLOT  <<  12) 

 Use upper case to name compile-time constants (including 'const', #define, and enums): 

 Run-time constants should not use upper case (as are compile-time constants) since they are more 
akin to variables than to compile-time constants.   

http://scipy.org/Tentative_NumPy_Tutorial


 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 8 of 66 

Statement Formatting 

 Each indent level is 4 spaces.  Source code may include tabs, however, any ASCII <tab>s in 
source code MUST use 8-space tab stops to ensure interoperation with standard display utilities. 

 Paired braces should always line up in the same column and with the controlling statement.  This 
makes it obvious where a block of code begins and ends.  [This is not K&R-like.] 
while (!done) 
{   if (idx == 5) 
    {   ...la de da; 
    } 
} 

 Use the newer “//” token to start comments that end at the end of the source line.  This is now 
standard in both C99 and C++. 

 Use conventionalized comments to flag sensitive code, especially switch() fall throughs. 

 Expect everyone to know the 4 basic operator precedence groups:  
 function( ), subscript [ ], struct.member, struct_ptr->member  
 arithmetic:  *, /, +, -  
 boolean:  &&, ||  
 assignment:  =, += , -=, etc.  
Use parentheses for the rest. 

 You should not put assignments within other statements.  This avoids unexpected behavior, 
especially in arguments passed to macros.  This applies to some degree to the ++ and -- operators. 

 For pointer manipulation, use sizeof() and offsetof() for readability and portability. 

Simple Examples 
// small ‘if’ 
if(color == RED)  nred++; // count each color’s frequency 
 
if(condition == DANGER) // medium ‘if’ 
    alert_operator(); 
 
// small blocks of code 
while (!done) 
{   if (idx == 5) 
    {   sumx += curval(); 
        nsum++; 
    } 
} 
 
// big blocks of code 
while (!done) 
{  
    if (idx == 5) 
    { 
        ...long block of code 
    } // if(idx ...) 
} // while(!done) 
 
switch(value) 
{ 
case 1: 
    ...code 
    break; 
 ...  
} 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 9 of 66 

1.2 Document Overview 

1.2.1 Scope 

This document describes the coding practices and procedures recommended for all software 
development, in groups of 1 or more.  The guidelines are “lightweight” enough to be easy to follow, but 
complete enough to enable new developers to join a coding project quickly.  This document contains 
guidelines for writing C, C++, and Python software, porting 3rd party software, and writing assembly 
language procedures. 

1.2.2 Notation 
Acceptable code fragments are printed in this style; 
Deprecated code fragments are printed in this style. 

1.2.3 Terminology 

Modeled on IETF RFC2119, this document uses the terms MUST, should, may, MUST NOT, and 
should not to clearly specify the degree of compliance required: 

may this word means that an item is truly optional.  One developer may choose to include the 
item because they feel it adds value in terms of readability or behavior to their software 
implementation. 

MUST this word means that the guideline is an absolute requirement for software 
implementation 

MUST NOT this phrase means that the guideline is an absolute prohibition of software implementation 

should this word means that there may exist valid reasons in particular circumstances to ignore a 
particular item, but the full implications must be understood and carefully weighed before 
choosing a different course 

should not this phrase means that there may exist valid reasons in particular circumstances when the 
particular behavior is acceptable or even useful, but the full implications should be 
understood and the case carefully weighed before implementing any behavior described 
with this label 

1.3 Issues 

1.3.1 Open Issues 

This section outlines open issues that need to be resolved. 

1. lint 

2. Do we need copyright notices in our software? 

3. ?? Both C and C++ allow objects and functions to have static file linkage, also known as internal 
linkage. C++, however, deems this as deprecated practice (says who?), preferring the use of 
unnamed namespaces instead. (C++ objects and functions declared within unnamed namespaces 
have external linkage unless they are explicitly declared static.  C++ deems the use of static 
specifiers on objects or function declarations within namespace scope as deprecated.) ??  Do 
PRIVATE and PUBLIC fix this? 

1.4 Assumptions 
Assumptions made in these guidelines: 

1. These guidelines assume you are already familiar with your programming languages. 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 10 of 66 

1.5 Definitions, Abbreviations, Acronyms 
This section contains definitions, abbreviations, and acronyms that are common in this document.     

The default format for terms in this section is bold with the first letter capitalized.  Other formatting 
(all caps, italics, etc.) is included if the terms are always used with that formatting. 

<Term> <definition > 

Actual arguments the parameters passed to a function by the caller. 

Automatic describes variables of function-local scope that are not statically declared. 

Definition in C, the statements where a variable or function is fully described/initialized. 

Declaration in C, the statement that allows further code to reference a function or variable.  
[K&R, 2nd ed., p210]. 

Formal parameters the parameter definitions in prototypes and function definitions. 

Global describes any data or functions that are accessible between modules and 
components in a software build.  The externs and prototypes for these should be 
included in a header file that is hierarchically above all the modules that 
reference them. 

Hungarian Notation Do not use Hungarian notation.  In Hungarian Notation, the  data type of the 
variable or function return value is indicated by prefixing the name with 
characters that indicate the returned data type.  For example, a function that 
returns an integer value might be named ‘iMyFunction’, a function that returns a 
pointer to an integer might be ‘piMyFunction’, etc.   

Local describes any data or functions that are accessible to a single file.  These should 
always declared with the PRIVATE macro. 

may this word means that an item is truly optional.  One developer may choose to 
include the item because they feel it adds value in terms of readability or 
behavior to their software implementation. 

MUST this word means that the guideline is an absolute requirement for software 
implementation 

MUST NOT this phrase means that the guideline is an absolute prohibition of software 
implementation 

PRIVATE is a label that is applied to all data and function definitions that are NOT visible 
outside the scope of the file they are defined in.  Not to be confused with the 
C++ keyword “private”. 

PUBLIC is a label that is applied to all data and function definitions that are visible 
outside the scope of the file they are defined in.   Not to be confused with the 
C++ keyword “public”. 

Shared describes any data or functions that are accessible within multiple files of a 
single module. The externs and prototypes for these should be included in a 
header file that is in the module’s directory. 

SHELL is a label that is applied to all data and function definitions that are NOT 
intended to be used by operational software, but they need to be visible at the 
Shell for diagnostic use.  There should be no external references for SHELL 
functions or variables.  If there are external references, then they should be 
defined as PUBLIC. 

should this word means that there may exist valid reasons in particular circumstances to 
ignore a particular item, but the full implications must be understood and 
carefully weighed before choosing a different course 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 11 of 66 

<Term> <definition > 

should not this phrase means that there may exist valid reasons in particular circumstances 
when the particular behavior is acceptable or even useful, but the full 
implications should be understood and the case carefully weighed before 
implementing any behavior described with this label 

1.6 References 
[1] RFC2119 Key words for use in RFCs to Indicate Requirement Levels: Contains the IETF standard 

definitions for MUST, MUST NOT, should, should not, and may 

[2] <http://david.tribble.com/text/cdiffs.htm>, comparison of C99 and C++. 

[3] http://www.oreillynet.com/pub/a/network/2003/10/07/michael_barr.html, standard integers. 

1.7 Revision History 
Track the document history in this section.  Format is: 

<date>  <Writer’s initials>: <Document version>. <Description of changes> 

7/21/04 ELM: Version 0.1: Initial draft. 

9/7/2004 ELM: V 0.2. 

1/2009 ELM: many major updates accumulated over time. 

http://david.tribble.com/text/cdiffs.htm
http://www.oreillynet.com/pub/a/network/2003/10/07/michael_barr.html


 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 12 of 66 

2. ‘C’ Coding Guidelines 
This chapter outlines ‘C’ syntax, style, and coding conventions.   

2.1 General Guidelines 
ANSI C  All code should be compiled with an ANSI C Compiler to ensure compatibility 

(at least from the compiler’s point of view) with the ANSI C standard.  

Do not use double underscore to start any identifier or macro; these are reserved for the compiler. 

Developers should not use Hungarian notation for identifier names, because they are hard to read.  
[“Hungarian Notation is the tactical nuclear weapon of source code obfuscation techniques” -Roedy Green, 
www.strauss.za.com/sla/code_std.html] 

2.1.1 Templates 

Templates help to maintain consistency among a set of developers, and make it easy to get started on 
the coding process.  This consistency also allows for automatic text search utilities to find things, and 
extract them for documentation.  We have created a set of templates for coding in ‘C’ with the following 
names: 

‘C’ Code File: template.c 

‘C’ Header File: template.h 

Make File: template.mak 

Whenever creating a new module/file, developers should start with the latest version of the templates, 
because they improve over time.   

The current templates are typically stored in the project “include” directory, e.g. /home/apollo/include.  

2.1.2 Grandfathering 

Because guidelines tend to change over time, some older code may not completely comply with the 
current guidelines.  You may leave older code as is, or you may change it.  Bear in mind that there are risks 
to both options.  Particularly for comments, updating to the current guidelines is encouraged. 

2.1.3 No Warnings 

A quality requirement for code is no lint/compiler/linker warnings.  While some warnings may seem 
harmless, they often mask larger problems.  Also, code that regularly produces warning messages can cause 
the developer to miss a new warning that is a problem.  And when others inherit code with warnings, it’s 
difficult for them to know if the warnings are problems, or “harmless.” 

2.1.3.1 Lint Warnings 

All code MUST pass lint tests.  The standard configuration parameters for LINT are defined in a set of 
lint configuration files that are referenced in our make files. 

2.1.3.2 Compiler Warnings 

To turn off inappropriate compiler warnings, you may create dummy statements with a comment to 
indicate the purpose.  For example, this is useful for variables that are defined but not referenced. 

http://www.strauss.za.com/sla/code_std.html


 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 13 of 66 

: 
PRIVATE uint8   *author_ptr = “Eric Michelsen”; 
: 
main 
{ 
   (void ) author_ptr;   // Avoid warning 
   ... 
} 

2.1.3.3 Linker Warnings 

Code MUST link without warnings. 

When documenting designs, a small number of large documents is much easier to search 
through than a large number of small documents. 

2.2 C++ and C99 Compatibility 
Migration to C++ may be necessary at some time.  Because some constructs that are valid in C are 

invalid in C++, or behave differently in C++,  you should avoid the following incompatible cases, and code 
strictly in “clean C.”  “Clean C” compiles and runs properly in C++. 

Developers should not use the following C++ reserved words (as always, case sensitive), common 
ones are indicated in bold: 

asm bool catch class const_cast 
delete dynamic_cast explicit export 
false friend inline mutable 
namespace new operator private protected public 
reinterpret_cast static_cast 
template this throw true try typeid 
typename using virtual wchar_t 
 
and and_eq bitand bitor compl  
not not_eq or or_eq xor xor_eq 

Developers should avoid repeating structure or union tags in structure/union typedefs, because in C++, 
a structure/union tag is automatically a typedef.  Therefore, including both the tag and the typedef causes a 
duplicate definition error in C++. 

typedef struct { ... } xyz;   // C++ compatible 
instead of:  typedef struct xyz { ... } xyz; // Not C++ compatible 

A consequence of C++ function name mangling is that identifiers in C++ are not allowed to contain 
two or more consecutive underscores (e.g., the name foo__bar is invalid). Such names are reserved for 
the implementation, ostensibly so that it may have a guaranteed means of mangling source function names 
into unique object symbolic names [2]. 

?? Both C and C++ allow objects and functions to have static file linkage, also known as internal 
linkage. C++, however, deems this as deprecated practice, preferring the use of unnamed namespaces 
instead. (C++ objects and functions declared within unnamed namespaces have external linkage unless they 
are explicitly declared static. C++ deems the use of static specifiers on objects or function 
declarations within namespace scope as deprecated.) ??  Do PRIVATE and PUBLIC fix this? 

C99 provides a predefined identifier, __func__, which acts like a string literal containing the name 
of the enclosing function. While this feature is likely to be provided as an extension by many C++ 
compilers, it is unclear what its value would be, especially for member functions within nested template 
classes declared within nested namespaces. 

C99 has a few reserved keywords that are not recognized by C++: restrict, _Bool, _Complex, 
_Imaginary, _Pragma  

This will cause problems when C code containing these tokens is compiled as C++. For example:  

    extern int   set_name(char *restrict n);  



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 14 of 66 

[C99: §6.4.1, 6.7.2, 6.7.3, 6.7.3.1, 6.10.9, 7.3.1, 7.16, A.1.2]  
[C++98: §2.11] 

2.2.1 Enums As Arguments 

There is no guarantee that a given enumeration type is implemented as the same underlying type in 
both C and C++, or even in different C implementations.  This affects the calling interface between C and 
C++ functions.  This may also cause incompatibilities for C code compiled as C++, if the C++ compiler 
chooses to implement an enumeration type as a different size that it would be in C, or if the program relies 
on the results of expressions such as sizeof(RED): 

    // C++ code 
 
    enum Color {RED, WHITE, BLUE}; 
 
    extern "C" void  foo(Color c); // Parameter types might not match 
 
    void bar(Color c) 
    { 
        foo(c);   // Enum types might be different sizes 
    }  

[C99: §6.4.4.3, 6.7.2.2].  [C++98: §4.5, 7.2] 

2.3 Code Organization 
Software should be organized into files in such a way as to increase cohesion and minimize coupling.  

One guideline for producing this effect is to group functions so as to maximize the amount of 'local' data 
and minimize the amount of 'shared' and 'global' data.  Therefore:  

Group functions because they reference the same data, rather than because they perform 
similar kinds of functions.   

From the definitions of “shared” and “PUBLIC” given earlier, the basic hierarchy is this: 

global data (programname.h)

shared data for 
module ‘dbase’

(dbase.h)

shared data for 
module ‘draw’

(draw.h)

shared data for 
module ‘trig’

(trig.h)
tr_f1.c tr_f2.c db_f1.c db_f2.c dr_f1.c dr_f2.c

 
Definitions of “shared” and “PUBLIC”: each file can see the data in boxes above it. 

For instance, if you need to decide how to organize functionality that performs the following major 
functions on 2 different kinds of data (represented abstractly here as 'aa' and 'bb'):  

 Initialize data for module 'aa' and 'bb' 

 Collect and manipulate data for 'aa' and 'bb' 

 Provide database access functions to 'aa' and 'bb' 

It would be best to group them like: 

 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 15 of 66 

Module aa  

Initialize 'aa' 

Collect and manipulate 'aa' 

DB Access Functions to 'aa' 

 

Module bb 

Initialize 'bb' 

Collect and manipulate 'bb' 

DB Access Functions to 'bb' 

Such an approach will often result in a structure where a 'higher-level' module (say the parent of 'aa' 
and 'bb') will provide an initialization routine which will call the initialization routines of sub-modules.  
The following would be an example of this paradigm. 

 
PUBLIC void top_initialize(void) 
{ aa_init(); 
 bb_init(); 
 
 ... more initialization code goes here ...  
} 

Programs with multiple files and multiple functions should be organized into modules.  A module is a 
file or set of files that form a process or library. 

2.4 Directory Layout 

A good goal for directory layout is that you can copy a single directory tree and get 
everything you need. 

Large programs may need to be divided into modules.  A module comprises one or more files.  All 
files in a module should be in a single directory, except header files shared with other modules, which are 
included in a common directory.  Sometimes, multiple small modules may be together in one directory. 

The current APOLLO directory layout is this: 
 
Makefile   // the makefile for all programs in ‘src/’ 
include\   // All shared include files 
src\    // common code/data library used by many programs 
    library-name\  // one of the libraries 
        *.c   // it’s *.c files.  No *.h files here! 
 
    ... other libraries similar 
 
    housctl\   // houston control program 
 *.h   // *private* include files 
 *.c   // houston control *.c files 
 
    ... other pograms similar 

When a declaration is shared between two files, put the declaration in the header file as low in the 
directory hierarchy as possible.  In the example above, declarations shared by mod1_main.c and 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 16 of 66 

mod1_util.c should go in mod1_private.h.  Declarations global to all code would go in a header file in 
Common\INC\. 

I would rather see the “include/” directory be inside “src/”, so that all the source is under the single 
directory “src/”.  Similarly, the makefile should be in src/, not in the top level.  -- ELM 

2.5 File Layout 
Need a picture?? 

Each file in a given module should be prefixed with a short prefix unique to the module. 

Include files that contain global declarations that are shared between modules (i.e. not within a 
module) should have their file names prefixed with “gi” (Global Include) to indicate that they are shared.  
This should alert the developer to be especially careful when making changes.  For example, the project 
include file might be named gi_apollo.h 

All functions and data that are used outside the module (i.e. global) should be prefixed with the same 
prefix that identifies the module.  This helps developers to quickly identify where the function and 
variables are defined, and provides more insight into their general purpose. 

For example, the executive may be broken up into 3 files: 

ex_main.c 
ex_data.c 
ex_util.c 

Examples of PUBLIC functions found in the above files: 

ex_set_current_time() 
ex_get_current_time() 

2.5.1 File Layout: *.c Files 

*.c files will look similar to this: 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 17 of 66 

/* abc.c description 
 
 
Copyright 2009 blah.  All rights reserved. 
 
This file contains ...?? 
 
Author:        Your name here 
Design Doc:    Name of HLD/LLD that pertains to the functions in this file 
Date Created:  ?? 
============================================================================*/ 
 
// ---------------- Open Issues             (do not remove) ------------------ 
 
// ---------------- System Includes         (do not remove) ------------------ 
// use <> (angle brackets) for library headers 
#include <stddef.h>  // offsetof() 
 
#include "comtypes.h" 
 
// ---------------- Local Includes          (do not remove) ------------------ 
#include "abc.h"  // abc_needthis() 
 
// ---------------- Constants               (do not remove) ------------------ 
 
// ---------------- Structures/Types        (do not remove) ------------------ 
 
// ---------------- Public Variables (use sparingly, do not remove) ---------- 
 
// ---------------- Private Variables       (do not remove) ------------------ 
 
// ---------------- Private Prototypes/Macros (do not remove) ---------------- 
 
 
 
/*---------------------------------------------------------------------------- 
Descriptive Name (optional) 
Description of the purpose of the routine, and any algorithm information. 
   
Static IN: List the externally defined static variables that are used by 
  this function 
Static OUT: List the externally defined static variables that are modified 
  by this function. 
 
Notes:  This section relates any special circumstances of this code.  It is  
flush left for easy editing. 
----------------------------------------------------------------------------*/ 
PUBLIC type ex_func( // describe return values here ... 
 type arg1,  // decribe arg1 here 
  const type *arg2_ptr, // describe arg2_ptr here ... 
  INOUT type *arg3_ptr, /* describe arg3_ptr here, if this is a 
    particularly complex input, use multiple lines*/ 
  OUT type *arg4_ptr) // describe arg4_ptr here, terminate with paren 
{ 
    ... YOUR CODE HERE ... 
} // ex_func() 

2.5.1.1 Function Placement 

Files should define functions in top-down order, i.e., the highest level functions first, because top-
down is usually the easiest way to learn a new module.  This organization means local (forward) prototypes 
are needed, because low level functions are defined after they are referenced. 

2.5.1.2 Source Module/File Comment Blocks 

Each source file should begin with a header comment block that indicates the file name, the module 
that the file belongs to, and the general purpose of the functions in the file.  Someone reading this header 
should be able to determine the purpose of the file, and how it fits into the overall software picture. The 
header should be brief and to the point. A template for the source file header is provided in template.c. 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 18 of 66 

Each file header should include a copyright notice, the name of the original author of the file, a 
reference to the design document associated with the source in the file, and the date that the file was 
created.  The other information included in the file header should be divided by type into sections with a 
standard set of section delimiters (Open Issues, System Includes, Local Includes, etc.).  The section 
delimiters allow for consistent formatting of source files by many different programmers and make it easy 
to find specific information. They should be included even for empty sections so that the sections are in the 
same order in all files. 

Each file should contain a revision history, written and controlled by the configuration management 
package.  The revision history is stored at the end of the file, so that the programmer does not need to wade 
through the history each time the file is opened.  Example: 

2.5.1.3 #include 

Put comments on your #include lines to document the most important identifiers supplied by the 
header file.  This helps avoid #include bloat: when later a reference is removed, one can more readily 
remove the now-spurious #include for it. 

When including header files in a source file, do not include a directory path for the header file.  The 
rules for searching the include paths should be encoded in the make file.  This allows the developer to 
move header files without impacting the source code. 

‘C’ Library header files, or OS header files should be included with < > (angle brackets) to indicate 
they are library files.  Project generated header files should be included using " " (quotes).    Compilers use 
different search rules for include files enclosed in < > and " ".  For include files enclosed in "", the compiler 
searches in the local directory first.   

2.5.2 File Layout: *.h (Header) Files 

Header files define the interfaces for a module.   

Header files should include the minimum amount of information (prototypes, constants, 
structure declarations, global data definitions) that is needed by external modules to use public 

functions.  Private typedefs and prototypes should be in the *.c file, not the *.h file.  

Developers should avoid including header files within header files [Str p211: “... the single header file 
approach is unworkable...”].  Header files usually contain only prototypes, constants, and data structures.  
[Where global data is used, it may be defined using the EXPORTED macro defined in an appendix.] 

The following is an example of a header file, abc.h: 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 19 of 66 

/* abc.h description 
 
Copyright 2009 blah.  All rights reserved. 
 
All the declarations [needed to use][private to] the ?? module. 
 
Author:  ?? 
Date Created: ?? 
============================================================================*/ 
 
#ifndef INC_ABC_H 
#define INC_ABC_H // Make sure the include happens only once 
 
// ---------------- Prerequisites -------------------------------------------- 
// e.g., Requires "comtypes.h" 
 
// ---------------- Constants           (do not remove) ---------------------- 
 
// ---------------- Structures/Types    (do not remove) ---------------------- 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
// ---------------- Public Variables (use sparingly, do not remove) ---------- 
 
// ---------------- Prototypes/Macros   (do not remove) ---------------------- 
// C prototypes 
 
 
 
#ifdef __cplusplus 
} 
// C++ prototypes 
#endif // __cplusplus 
 
#endif // INC_ABC_H 

The #ifndef INC_ABC_H is needed in case this file is included in other header files.  Developers 
should avoid including header files within header files.  However, if you run into a situation that warrants 
it, the format above should be used, and you should put nested #includes inside the #ifndef INC_xxx_H. 

2.6 Functions 

2.6.1 Function Calls 

All function calls MUST refer to previously declared functions.  Implicit function declarations are not 
allowed (C99 and C++ mandate this). 

2.6.2 Function Headers and Footers 

Each function should begin with a header comment block which conveys information about the 
purpose of the function, the expected inputs, and the outputs.  These headers should be direct and concise.  
The header should also include any unexpected behavior that may occur when the function is called.  A 
developer should be able to understand how to use a function, and what to expect of it by reading the 
header.   

The scope of all functions should be declared using the macros PUBLIC, PRIVATE, or SHELL.  This 
forces the developer to explicitly identify functions that are meant to have a scope outside the current file. 

Sections of the header that do not apply to a particular function should be retained in the file, and left 
blank.  This allows them to be filled-in in the future, if needed.  You may precede the function header with 
<FF> (control-L) to force the function to appear on a new page in a listing. 

The function definition should follow the function header.  Each function should have a comment on 
its closing brace that indicates the function name.  (This is particularly useful when rummaging through 
medium/large modules.) 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 20 of 66 

The preferred format places the parameter information (including return value) as comments in the 
actual definition: 

 
//---------------------------------------------------------------------------- 
Descriptive Name (optional) 
Description of the purpose of the routine, and any algorithm information. 
   
Static IN:  List the externally defined static variables that are used by this  
            function 
Static OUT: List the externally defined static variables that are modified by  
            this function. 
 
Notes:  This section relates any special circumstances of this code.  It is  
flush left for easy editing. 
----------------------------------------------------------------------------*/ 
PUBLIC type ex_func(       // describe return values here ...                
  
          type arg1,       // decribe arg1 here 
    const type *arg2_ptr,  // describe arg2_ptr here ... 
    INOUT type *arg3_ptr,  /* describe arg3_ptr here, if this is a  
                              particularly complex input, use multiple lines */ 
    OUT   type *arg4_ptr)  // describe arg4_ptr here, terminate with paren 
{    
} // ex_func() 

NOTE:  For functions with no parameters, the definition may go on a single line (with ‘void’ in 
parentheses).   

NOTE:  For lists of Static IN/OUT that are long, you may put in descriptive text about the kinds of 
statics referenced instead of listing each one in detail.  The main goal is readability and understanding.  
“Static” refers to both local statics, as well as global data. 

2.6.3 Function Naming 

Functions should be named with an eye toward the readability of the code which will call the function.  
For instance, the function name should reflect how the caller uses its return value.  E.g., a function whose 
job it is to determine whether a file name is valid, and return a boolean result, should be called something 
like ‘filename_is_valid’ rather than ‘validate_filename’.   

This has two benefits:  both the caller and implementer of the function can easily keep in mind the 
sense of the return value, so the logic of the code which calls the function will be clearer.   For example: 

 
if (fm_filname_is_valid(filname_ptr))  // this is easier to read/understand 
{    
    ...  
instead of:  if ( fm_validate_filename(filename_ptr) )  // this is less clear 

Functions that act on objects should have a name giving the object type first, then the operation, e.g., 
‘date_increment’, rather than ‘increment_date’. 

Multi-word function names may use underscores or capital letters to segregate words.  Either method is 
readable (for example, fm_filename_is_valid and fmFileNameIsValid are both acceptable).  Developers 
should use the same style consistently within a single module. 

2.6.4 Function Prototypes 

Function prototypes have different formatting rules than do function definitions.   You may use the 
same format for the prototypes, or you may choose a more compact representation.  In either case you 
should use the parameter qualifiers ‘const’, OUT, and INOUT as described below in 2.6.4.3 Function 
Formal Parameters. 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 21 of 66 

2.6.4.1 Public Function Prototypes 

Public function prototypes appear only in header files.  Every file that uses public functions should 
include the header file for those functions (i.e. use the prototypes).  You should declare public functions 
using the keyword “extern”. 

Files that define public functions should include the header file(s) containing their prototypes.  This 
allows the compiler to identify inconsistencies between the prototype and the function definition.  Example: 
in ex_private.h: 

 
// ---------------- Prototypes/Macros       (do not remove) --------------- 
extern  int32     ex_intfunc(void); 

Note Header files use the keyword “extern,” NOT the macro PUBLIC, because this is 
more appropriate. 

2.6.4.2 Private Function Prototypes 

Private function prototypes should be at the top of the *.c file, to serve as forward declarations for 
functions appearing later in the file.  Declare private functions with the macro PRIVATE (defined as 
“static” in comtypes.h).  Example in ex_main.c: 

 
// ---------------- Private Prototypes/Macros (do not remove) ------------- 
PRIVATE int32     intfunc(void); 

2.6.4.3 Function Formal Parameters 

Formal parameters are the parameter definitions in prototypes and function definitions. 

You should qualify pointer parameters to functions with the following modifiers to help create self 
documenting code:  const, OUT, INOUT. These modifiers indicate whether a parameter is an input-only 
parameter, output-only parameter, or both, and are described below: 

const   is ANSI C, and, when placed before the type, specifies that the target of the 
pointer is an input to the function and is not modified by the routine.  The 
compiler verifies that the function does not modify the target of  the pointer. 
NOTE:  for other uses of const refer to your favorite C reference book.  

OUT specifies that the target of the pointer will be modified by the function. 

INOUT specifies that the target of the pointer is an input to the function, and will 
also be modified by the function as an output. 

Do not use “IN”, which is now deprecated (and replaced by “const”). 

The macros OUT and INOUT are defined as nothing in comtypes.h.  

By definition of the C language, non-pointer parameters are always in-only, and should not be tagged 
(tagging would just be noise). 

 
extern int32 ex_proc(      int32 iCount,  
                     const int32 *int_ptr,  
                     OUT   char  *result_ptr); 

Thus, by simply looking at the prototype, it is clear which parameters are modified in the function. 

You should always use “void” in the parameter list when creating a prototype for function that takes no 
parameters.  For example, 

extern  int32   ex_func(void); 

is a prototype for a function with no parameters. 
int32 func(); 

defines a function with no prototype, and should not be used, because the compiler 
cannot check that no parameters are passed to it.  



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 22 of 66 

2.7 Typedefs 
All typedefs should be defined with at least one lower case letter (we reserve all-upper-case symbols 

for constants.) 

Structures should be typedef’d to allow users to reference the typedef name directly.  Typedefs for 
structures in global include files should be named with the module prefix. 

Use the project predefined typedefs in place of most of the standard C data types.  This makes it easier 
to port code between processors that may have different definitions for the standard types.   The only 
allowed standard type is ‘char’, and only for actual character data, not for short integers.  For example, 

 
PRIVATE int32 function (int16 msg_size, uint32 transfer_id) 
{ 
} 
instead of:  PRIVATE int function (int msg_size, unsigned int transfer_id) 
             { 
             } 

The following types are defined in comtypes.h: 

Name Definition 

uint8 8-bit unsigned integer 

int8 8-bit signed integer 

uint16 16-bit unsigned integer 

int16 16-bit signed integer 

uint32 32-bit unsigned integer 

int32 32-bit signed integer 

nbo16 16-bit integer in Network Byte Order (MSByte first) 

nbo32 32-bit integers in Network Byte Order (MSByte first) 

unbo16 unsigned 16-bit integer in Network Byte Order (MSByte 
first) 

unbo32 unsigned 32-bit integers in Network Byte Order (MSByte 
first) 

bool 32-bit signed integer (with 2 values 0=false or 1=true) 

Note The “nbo” types are defined as integers, but are used for documentation.  You 
MUST explicitly code any byte swapping necessary to maintain “nbo”  
variables. 

?? The one exception to using project defined data types is in parameters to shell functions.  Shell 
functions are callable from the vxWorks Shell, and are expected to use 'ints' as parameters.  

2.8 Variables 
In variable declarations, the variable names should line up in the same column when possible.  This 

makes it easier for the developer to distinguish between the types, and the names (especially, when there 
are many variables defined). 

A variable declaration should contain a comment describing its purpose if the name is not self-
explanatory.  The comments for multiple variables should be lined up in the same column for readability. 

Function variable declarations should be indented one level from function name.  This helps to clarify 
where functions begin. 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 23 of 66 

 
// ---------------- Constants               (do not remove) --------------- 
#define   PI  3 
: 
: 
PUBLIC ut_status ci_circle_draw (  // Returns status of draw operation 
    uint32 radius )             // Radius of circle, in inches 
{ 
    const uint32    area=2*PI*radius; 
    ut_status       status;  // Status returned 
    uint32          x_point; 
    uint32          y_point;  // for calculating coordinates in the circle 
 
    : 
    : 
 
} // ci_circle_draw 

2.8.1 Variable Names 

Variable names should be as self-explanatory as possible.  Cryptic variable names make the code 
harder to understand to maintainers.  On the other hand, code filled with 30-character variables for 
everything is very difficult to read.  In general, the more commonly used a variable is, the quicker a reader 
becomes familiar with it, and the shorter the name can reasonably be. 

There should be no single character variable names.  Single character variable names are hard to search 
for in code and not descriptive enough to be useful.   

Index variables should be named consistently with the item they are indexing (i.e. board_idx).   

2.8.2 Variable Prefixes and Suffixes 

The standard prefixes for functions are defined in the Section 2.6.3: Function Naming.  The standard 
prefixes for files are defined in Section 2.5: File Layout 

There are several standard variable name suffixes that can make reading unfamiliar code easier.  In  
order for these suffixes to be useful, they should be used consistently throughout the software.  Below is a 
list of our standard suffixes: 

Suffix Meaning 

_ptr variable is a pointer 

_p2p variable is a pointer to a pointer 

 

Additionally, the following suffixes may also be used to help clarify the variable usage. 

Suffix Meaning 

_str variable is a character string 

_arr variable is an array 

_fp variable is a file pointer  

_s identifies a structured data type 

_t identifies a typedef’d type (such as an enum) 

Multi-word variable names may use underscores or capital letters to segregate the words.  Either 
method is readable (for example, board_index and boardIndex are both acceptable).  Developers should use 
the same style consistently within a single module. 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 24 of 66 

2.8.3 Global/Shared Definitions 

Global variables are those which are defined in one module, but are accessible from other modules as 
well.  Their use is strongly discouraged, because code is much more maintainable and less error prone if 
direct access to any variable is restricted to a well defined interface within a single module. In general, a 
PRIVATE variable should be defined within the module and a set of PUBLIC functions for manipulating 
that variable (i.e. an API) should be provided by that module, including an initialization function when 
necessary.  PRIVATE variables are discussed in  the section on “Non-Global Definitions” which follows. 

Shared variables, while similar to global, are visible to multiple files but are only used within a 
module.  The concept of shared is at times hierarchical and may be shared across multiple directories.  
Shared variables should always be defined at the lowest layer possible based on their intended use.  While 
use of global variables is rarely justified, performance considerations or code complexity sometimes justify 
the use of a variable which is shared among files within a module. An example is configuration data used 
by functions in the packet forwarding speed path.  The declaration of a shared variable should be placed in 
a header file, just like an extern function declaration. The intent is to provide a well defined interface to the 
variable, even though it is technically global.   Most accesses to the variable should be read-only.  The 
variable’s value should be changed in as few places as possible.  

2.8.4 Local Definitions 

File local static variables shared by more than one function in a file should be declared at the top of the 
file with the PRIVATE  macro (because the C-standard “static” keyword is a misnomer here).  Function 
local static variables should be declared in that function with the ‘static’ reserved word, because “static” is 
appropriate here: it defines a storage class, not a scope modifier.   

2.8.5 Bit Fields 

You MUST declare bit fields explicitly as either signed or unsigned, because C does not define the 
default, and different compilers may make different choices.  You may want to use bit fields for private 
data structures where memory efficiency is important, and code speed is less so.  Note that bit field packing 
order is implementation-specific, and so bit fields MUST NOT be used for inter-processor communication.   

Example: 
 
struct   // Explanatory comment here ...  
{   signed   field1 :3; 
    unsigned field2 :3; 
    unsigned field3 :10; 
} big_array[100000]; 

Don’t make assumptions about alignment or bit order of bit fields, because such things are undefined 
in ANSI C, and not portable. 

2.9 Constants & Enums 
Let the compiler do the work: when coding compile time constants which are calculated, write them as 

an arithmetic expression that conveys their meaning and derivation: 
#define TDC_SLOT_BITS (TDC_SLOT  <<  12) 

You may use 'const' instead of #define for most compile time constants.  “const” variables allocate 
storage, and have an address.  The advantage to const is that it will appear in the symbol table, and can be 
examined with the debugger.   

You should use upper case to name compile-time constants (including 'const', #define, and enums): 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 25 of 66 

 
#define MAX_DS3S 4 
const uint8 MAX_NOISE_MARGIN = 32; 
typedef enum 
{   ON = 1, 
    OFF 
} switch_states; 

You can use constant structures to initialize default values in structure variables: 
 
const msg_addr NULL_ADDR = { AL_NO_COMP, 0, 0, 0 }; 

You can then use NULL_ADDR in a source file: 
 
PRIVATE void sc_discover (void) 
{ 
    my_addr = NULL_ADDR; 
... 
} 

One unfortunate limitation to 'const's is that compilers do not allow you to declare arrays whose 
bounds are specified by const if the array is static. 

2.9.1 Run Time Constants 

C also allows you to declare run-time constants.  Run-time constants are objects that are initialized to 
some value (computed at run-time) but are not allowed to change their value after definition.  Run-time 
constants should not use  upper case (as are compile-time constants) since they are more akin to variables 
than to compile-time constants.  You are encouraged to use run-time constants since they can improve 
readability and prevent errors.  For example: 

 
PRIVATE void foo(char *str_ptr) 
{ 
    const uint32 length_plus_pad = strlen(str_ptr) + pad; 
    ... 

 

2.10 Statement Formatting 

2.10.1 Indentation 

Each indent level is 4 spaces.   For example: 
 
if ( ... ) 
{  
    while ( ... ) 
    { 
        if ( ... ) 
        { 
        } 
    } 
} 

 

2.10.2 Tabs 

Source code may include tabs, however, text editors should not be reconfigured to set Tabs every 4 
spaces.  Editors should be configured with hard Tabs every 8 spaces.  This is because general utility 
routines (search, browse, etc.)  often do not have settable tab stops.  Any ASCII <tab>s in source code 
MUST use 8-space tab stops to ensure interoperation with standard searching and browsing utilities (which 
define default tab stops to 8-spaces). 

Developers may use spaces for all indents, or configure their editors to replace tabs with spaces. 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 26 of 66 

2.10.3 Line Length 

Lines should not exceed 80 characters.  Many utilities (browsers, diff tools, etc.)  wrap lines that are 
greater than 80 characters which makes code with long lines difficult follow. 

2.10.4 Braces 

Paired braces should always line up in the same column and the column is in alignment with the 
controlling statement.  This makes it obvious where a block of code begins and ends.  This is especially 
true for code that has several levels of nesting.  [This is not K&R-like.  Note that K&R is inconsistent: 
function braces line up, but other statement braces don’t.] 

 
while (!done) 
{  
    if (idx == 5) 
    { 
        ...la de da; 
    } 
} 

Braces should always be included around multiple line statements, even if the other lines are just 
comments.  This keeps the code structure clear to the casual observer. 

 
while (!done) 
{  
    if (idx == 5) 
    { 
        // Set flag to break out of loop 
        done = TRUE; 
    } 
} 

Braces should be used around conceptually big statements, even if they are physically small.  This 
informs the reader that the block is significant.  For example: 

 
// The following construct conveys a small concept in the conditional statement: 
 
idx++; 
if (idx >= max_idx)  idx = 0; // circular increment 
 
// But this construct conveys a major event: 
if (idx > max_idx) 
{ 
    ex_restart_board (); // unrecoverable error! 
} 

 

2.10.5 Comments   

Comments are an important part of any software.  It is important that comments be used to enhance the 
understanding of code, not reiterate what is already obvious. 

 Comments should be used freely.  Things that may seem obvious today may not be obvious to 
someone maintaining the code a year from now.  

 Long comment blocks should be separated from code by at least a line of white space. 

 Use the newer “//” token to start comments that end at the end of the line of text.  This is now 
standard in both C99 and C++. 

 Comments should be on a line by themselves unless they are VERY short. 

 Comments should be indented at the same level that the code is indented.  This helps to 
maintain the logical flow of the software. 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 27 of 66 

 
// Check for error condition before getting too far 
if ( error ) 
{ 
    // Let operator know that the command wasn’t executed 
    oper_notify_error ( NOT_EXECUTED ) ; 
} 

 Developers should put comments on the closing brace of long code blocks, and the closing 
brace of every function.  

 
if (db_access_is_ok(msg)) 
{ 
    while ( idx > 0 ) 
    { 
        : 
        : 
    } // while (idx > 0) 
} // if (db_access_is_ok(msg)) 

 In the case where an ‘else’ branch of an ‘if’ statement is far from its ‘if ‘ (more than 10 lines, 
say), it should carry a comment which explains the condition causing the else clause to 
execute.  e.g., 

         
if (db_access_is_ok(msg)) 
{ 
    : 
} 
else // db access is not OK 
{ 
    : 
} // if db_access_is_ok 

 

2.10.6 Conventionalized Comments   

 Conventionalized comments are comments of a fixed syntax.  These comments are used to flag 
questions, concerns, and sensitive code that a developer should be aware of when modifying the code.  
These comments should be used to flag returns in the middle of routines, taking/giving semaphores, 
enabling/disabling preemption, etc. 

On pairs of complementary statements (such as taking/giving a semaphore), you should use 
conventionalized comments to highlight their special relationship.  This comment should appear on the line 
of code, if feasible.  In any case, such related comments should be lined up visually ‘to the right of code’ to 
indicate their relationship.   

The structured comments identified thus far are: 

 

Comment Meaning 

EMBEDDED RETURN return in the middle of function 

DYNMEM alloc allocate dynamic memory 

DYNMEM free free dynamic memory 

INTERRUPT disable disable interrupts 

INTERRUPT enable enable interrupts 

PREEMPTION disable disable task preemption 

PREEMPTION enable enable task preemption 

fall through switch statement fall through (with no ‘break’) 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 28 of 66 

GOTO goto in the middle of a function 

SEMAPHORE take take a mutual exclusion semaphore 

SEMAPHORE give give a mutual exclusion semaphore 

$$ <initials; date> Used to flag inefficient code that you know may need 
to be made more efficient in the future. Should include the 
developer’s initials and a date stamp when it was entered. 

?? <initials; date> Questionable code. Should include the developer’s 
initials and a date stamp when it was entered.  

TBR <initials; date> Code that needs to be reviewed before it is finished.  
Should include the developer’s initials and a date stamp 
when it was entered. 

begin change, end 
change 

3rd-party software (documented in 3rd-party software 
chapter) 

An example usage would be: 
 
ut_mutex_take(...)                    // <SEMAPHORE> take 
// ?? Does this code work in the case of interrupts? 
if(...) 
{ 
    // $$ <LMM;4/11/99> Can we simplify this code? 
    ut_mutex_give(...)                // <SEMAPHORE> give 
    return;                           // EMBEDDED RETURN 
} 
: 
ut_mutex_give(...)                    // <SEMAPHORE> give 

2.10.7 Operators 

The many levels of precedence in C can be confusing, and few people know them by heart.  However, 
too many parentheses obscure code.  A reasonable compromise is to expect everyone to know the following 
4 precedence groups: 

f( ), a[ ], s.b, 
s->b 

Function arguments, array subscripts, 
structure members, and pointer to structure 
members 

*, /, % Multiply, divide 

+, -, and their ilk add, subtract 

&&, || logical AND, logical OR (not equal 
precedence) 

Of course, everyone knows that assignment is lowest of all.  Consider using parentheses to indicate 
other precedences, rather than relying on the pre-defined relationships. 

You should use assignment operators (+=, -=, *=, /=, %= &=, ^=, |=, <<=, and >>=) to 
improve readability (bear in mind  that 'x *= y +1;' is equivalent to 'x = x * (y + 1);' not 'x = x*y + 1;'). 

You should use the ternary operator (?:) when it aids readability, thus 
 
return (foo > 3) ? UT_OK : UT_ERROR; 
instead of:  if (foo > 3) 
                 return UT_OK; 
             else 
                 return UT_ERROR; 

because it is clearer that the point of the code is to return something, and the undecided point is the 
value to return. 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 29 of 66 

You should always consider readability when applying any of these rules.  For example: 
 
// Breaking out this logic makes it clear 
if (foo > 3) y *= 100; 
else  y *= 128; 
instead of:  y *= (foo > 3) ? 100 : 128;  // this is less clear 

2.10.8 Assignments within Other Statements 

You should not put assignments within other statements.  Doing so can produce unexpected behavior, 
especially in arguments passed to macros.  This also applies to some degree to the ++ and -- operators.  
Making the increments explicit can save hours of looking through code for counters gone awry.  Therefore, 
use embedded ++ and -- sparingly and cautiously. 

 
// NOTE:  The ‘min’ macro often uses the parameters multiple times 
new = min(old[idx], new); 
idx++; 
 

instead of:   
new = min(old[idx++], new); // doesn’t work! 

2.10.9 White Space 

To keep code clear, feel free to use white space between operators, braces, and parenthesis.  Code that 
is too dense is often difficult to read. 

// Leave white space between operators 
error = op_set_privileges(); 
 
// Use additional white space as appropriate for readability 
if ( cmd > max_cmd ) 
{ 
    // Let the operator know that the command wasn’t executed 
    op_notify_error( NOT_EXECUTED ) ; 
} 

2.10.10 Switch Statements 

In a switch statement, if code needs to fall through from one case to another, there should be a 
comment starting with “fall through” that describes the intentional fall through.  This makes it clear the 
missing break is intentional.  Lint is configured to flag a fall through without a comment as an error.  
NOTE:  Multiple “cases” for the same code do not need fall through comments. 

When “switching” on an enumeration value, you can have the GNU compiler verify that all possible 
values are covered by omitting the “default” case.  With no default, and if some enumeration values are 
missing, the compiler produces a warning.  Include a comment explaining your use of this feature: 

 
typedef enum {ABC, DEF, GHI} alpha_enum; 
: 
PRIVATE alpha_enum alpha_var; 
: 
switch (alpha_var)     
{ 
    case ABC:   // these two ‘cases’ go together 
    case DEF:   // no comment needed 
        oper_notify_error (error_code); 
         
        // fall through to next step after message is sent 
    case GHI: 
        io_close_contacts (); // activate error output 
        break; 
 
    // NOTE:  no default to insure all cases are covered 
} 

Switch statements on non-enumerated values MUST have a default case.  If you don’t expect the 
default case to ever be used, consider putting in an assert (or equivalent) statement. 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 30 of 66 

 
#define ERR_OPER_WARNING  1 
#define ERR_OPER_ERROR    2 
#define ERR_FATAL_ERROR   3 
: 
PRIVATE int32 error_code; // takes on a variety of error values 
: 
switch ( error_code ) 
{ 
    case ERR_OPER_WARNING: // these two ‘cases’ go together  
    case ERR_OPER_ERROR: // no pragma or comment needed  
        oper_notify_error (error_code); 
         
        // FALL THROUGH to next step after message is sent  
    case ERR_FATAL_ERROR: 
        io_close_contacts (); // activate error output  
        break; 
    default:   // no action on other cases  
        break; 
} 

2.10.11 Checking Error Returns 

Error return values are provided to allow a calling procedure to make an informed decision as to 
appropriate action to take when unexpected results occur.   The primary goal of the error checking is to 
ensure the integrity of the system.  It may not be necessary (or desirable) to check every status. 

Code may ignore error return values if it cannot do anything meaningful with the error.  Sometimes 
developers put a ‘(void)’ statement in front of functions where the return value is intentionally ignored.  
Because this clutters the code, we prefer not to do this.  

For example we prefer 
 
ut_free(msg_ptr); // ignore return value  
instead of: (void)ut_free(msg_ptr); // ignore return value  

2.10.12 Return Statements 

Attempt to structure your code to minimize the indenting impact of status checking.  The idea here is 
that the indenting of the code should reflect the ‘normal’ processing.  Rather than having extensive 
indenting which reflects error checking, consider returning when an error is detected (after performing 
appropriate ‘cleanup’).  When you do so, you should place "// EMBEDDED RETURN " on such lines: 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 31 of 66 

 
PRIVATE void foo(uint32 size)  
{ 
    ut_status status; 
 
    if (size > MAX_POOL_SIZE) return;         // EMBEDDED RETURN  
         
    status = ut_alloc(&ptr, size, LOCAL_POOL) // <DYNMEM> alloc  
    if (status != UT_OK) return;              // EMBEDDED RETURN  
    . 
    . 
    . 
    status = ut_send_msg(q_id, ptr, format, SIZE,…); 
    if (status != UT_OK) 
    { 
        ut_free(ptr);                         // <DYNMEM> free  
        return;                               // EMBEDDED RETURN  
    } 
    : 
    :      
    ut_free(ptr);                             // <DYNMEM> free  
} 

2.10.13 goto 

Avoid goto’s for normal control flow, but there are at least 3 cases where a goto statement may be used 
effectively: error handling, nested loop exiting, and switch case combining.  You should comment a goto to 
alert the reader of possible unexpected control flow. 

Error handling:  The first reasonable use of goto is for handling errors without adding confusing “if” 
nesting: 

 
PRIVATE void foo(void)  
{ 
    if(!(ptr = malloc(size) )  // <DYNMEM> alloc  
        return;             // no action possible   EMBEDDED RETURN    
 
     : 
    if( ... error ...)  goto cleanup_1; // GOTO  
     : 
    if(!(ptr2 = malloc(size) ) // <DYNMEM> alloc  
        goto cleanup_1;            // GOTO 
     : 
    if( ... error ...)  goto cleanup_2; 
     : 
 
cleanup_2: 
    free(ptr2);   // <DYNMEM> free  
cleanup_1: 
    free(ptr);                      // <DYNMEM> free  
} // foo() 

Note that this is emulating “by hand” what C++ provides automatically in calling class object 
destructors before exiting a procedure. 

Nested loop exiting:  The continue statement allows a jump to the end of a loop, but sometimes you 
want to jump to the end of an outer, enclosing loop.  Goto can be used for that: 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 32 of 66 

 
    for(trial = 11;  trial < 121;  ++trial) 
    {   for(divx = 0;  divx < divlim;  ++divx) 
        {   if(trial % prime[divx] == 0) 
   goto next_trial;  // GOTO. not prime 
        } 
        printf(“%d is prime\n”, trial); 
next_trial: 
    } 

Switch case combining:  If two or more cases have identical “finish-up” processing, it is sometimes 
effective to use a simple goto to share the common code.  The goto should jump forward, so that there is no 
confusing backward goto. 

 
    switch(process_type) 
    { case ODDBALL: 
 ... 
 break; 
 
      case COMMON_1: 
 ... code specific to COMMON_1 
 goto common_finish;   // GOTO 
 
      case COMMON_2: 
 ... code specific to COMMON_2 
common_finish: 
 ... code common to both cases 
 break; 
    } 

2.10.14 #if Pre-Processor Directive 

Use “#if 0” to “comment out” large sequences of code and pseudo-code, rather than “// ... */”, and 
include a comment on the #if line explaining why the code is retained in the source.  #if avoids problems 
with comment nesting in the if’d-out code, and is itself nestable. 

Beware of too many compile-time switches, i.e. #ifdef.  Too many #ifdefs can make code hard to 
follow, especially if they are nested. 

Beware of comparing macro constants in #if statements, because all undefined macros in C-pre-
processor statements are replaced by “0” before expression evaluation.  For example: 

 
#if CPU == POWER_PC 

will evaluate to true if neither CPU nor POWER_PC are defined, because 0 == 0.  If you forget the 
header file, the above line produces no error, but includes POWER_PC code, which is probably wrong.  As 
an alternative, try: 

 
#if defined(CPU) && CPU == POWER_PC 

2.10.15 #error Pre-Processor Directive 

Use "#error <description of error>" in an "#if ….. [#else …..] #endif" sequence of statements to report 
an invalid combination of definitions detected at compile time. For example, use 

  
#if MAX_BC_INTQ_SIZE < 6600 
#error: MAX_BC_INTQ_SIZE is too small 
#endif 

2.10.16 Testing for Null Pointers 

To test for NULL pointers, you may use either “if (!ptr)” or “if (ptr == NULL)”.  Note that 
the boolean interpretation of a pointer can be thought of as “pointer is valid.” 

If a function accepts (void *) pointers, don’t cast actual arguments to it with (void *), (void **), etc.  
It’s just noise.  For example: 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 33 of 66 

 
PRIVATE struct complex *complex_ptr; 
 
PRIVATE func(void *ptr); 
 
func(complex_ptr);  // no cast 
instead of:  func((void*)complex_ptr); // unnecessary cast  

2.10.17 Use sizeof() and offsetof() 

For pointer manipulation, code that uses sizeof() and offsetof() is more readable, and more portable, 
than hard-coding constants.   

Also use sizeof for buffer manipulation.  This includes copying, allocating, etc.  For example: 
 
char          temp_buffer [MAX_LINE_LENGTH]; 
 
memset (temp_buffer, 0, sizeof(temp_buffer)); 
instead of:  memset(temp_buffer, 0, MAX_LINE_LENGTH); 

For referencing structures from a void pointer, cast the pointer to your structure type, and dereference 
that normally: 

((struct_type *)ptr)->field  
instead of:  *(int32 *)(ptr+4) 

For unusual cases where you need the actual offset of a structure field, use the offsetof() macro, 
from stddef.h: 

    char *new_ptr, *old_ptr; 
    new_ptr = old_ptr + offsetof(struct_type, field); 

If you need to step a pointer over a given data type, you should do it symbolically: 
    char *xyz_ptr; 
    xyz_ptr += sizeof(int32); 
instead of:  xyz_ptr += 4; 

2.11 Macro Functions and Inline Functions 
This section covers macro functions.  Macro constants are covered in Section ‘2.9 Constants & 

Enums’. 

Macro functions should be declared using lower case names (that comply with our function naming 
conventions).  This makes it easier to rewrite a macro as a function (or vice versa), with minimal changes to 
the application code that uses the macro. 

Arithmetic macro function definitions should enclose all the arguments in parentheses, and themselves 
be enclosed in overall parentheses: 

#define plus_two(x) ((x)+2) 
idx = plus_two(idx << 1)*3 

If either set of parentheses are missing in ‘plus_two(x)’, the above code behaves unexpectedly. 

2.11.1 Multi-statement Macros 

There are some problems when using multi-line macro functions.  Note that inline functions solve all 
these problems, and more.  Because macros are simple text substitutions, when a macro includes multiple 
C-language statements, you MUST be careful to avoid the famous “if(x) macro;” problem.  For example: 

 
#define init(x, y) x = 1; y = 1 
 
if(...)  init(a, b); 

probably does not do what is expected.  The intent is for ‘a’ and ‘b’ to both either be initialized, or both 
be not initialized.  However, the above code expands into the following (indented for clarity): 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 34 of 66 

 
if(...) 
 a = 1; 
b = 1; 

‘b’ is always initialized.  A simple fix for assignment statements is to use the comma operator to 
reduce the macro to a single C-language statement: 

#define init(x, y) (x = 1, y = 1) 

A similar problem occurs if the macro itself contains an ‘if’ statement: 
 
#define reset(x) \ 
 if(reset_allowed)  x = 1 
 
if(time_to_reset)   
 reset(x); 
else 
 printf(“not time to reset”); 

The above code does not work as it appears, because it expands to this (indented for clarity): 
if(time_to_reset)   
 if(reset_allowed) 
  x = 1; 
 else 
  printf(“not time to reset”); // wrong  

The above problem can be fixed by re-coding the macro thus: 
 
#define reset(x) \ 
 if(reset_allowed)  x = 1; \ 
 else (void) 0  // ‘(void) 0’ avoids null-statement warning 

A general approach for solving more complex multi-line macros is to enclose the entire macro in an 
if(1) {} else wrapper.  Again note that an inline function handles this much more cleanly: 

#define multimac  \ 
 if(1)   \ 
 { line 1; \ 
  line 2; \ 
  ...;  \ 
 }   \ 
 else (void) 0 

2.11.2 “inline” Functions 

As an extension to ANSI C, some compilers allow the use of an ‘inline’ modifier for functions (this is 
standard in C++).  This requests (but does not require) the compiler to treat the function much like a macro, 
expanding the function “inline” for each call to it.  The function thus incurs no function-call overhead (like 
a macro), but retains all the benefits of parameter type checking and conversion (which a macro forgoes). 

We define a macro ‘INLINE’ that should be used for defining inline functions. 

Since most compilers today are both C and C++, and since “inline” is a standard C++ keyword, most C 
compilers accept “inline.”  If we ever needed to port code which uses “INLINE” to a compiler which didn’t 
support it, we could easily #define INLINE with an empty definition, and the code would work without 
further modification. 

2.12 Network and Inter-Processor Communication 

2.12.1 Packing 

Most compilers generate code that is efficient for the target processor.  To generate such code, 
compilers may add "padding" bytes to structures to align integers to the alignment of the processor.   

We require our compilers to support packing of structures with no padding, when needed.  To achieve 
packing, we add the PACKED_ATTR macro to the definition of each field in the structures.  Example: 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 35 of 66 

 
typedef struct 
{ 
    msg_al_addr   dest    PACKED_ATTR; 
    msg_al_addr   src     PACKED_ATTR; 
    unbo16        pid     PACKED_ATTR; 
} msg_al_hdr; 

PACKED_ATTR is defined in a project-standard header.  For the GNU compiler the following 
definition of PACKED_ATTR is used.   

 
//---------------------------------------------------------------- 
  Define a macro for setting the packed attribute on structures  
  that are shared across interfaces. 
  ----------------------------------------------------------------*/ 
#define PACKED_ATTR  __attribute__ ((packed)) 

NOTE:  This definition may need to be changed to support new compilers/processors: 

NOTE:  Not all compilers support this construct.  For example, some compilers must specify 
alignment at the beginning of the header file using a pragma.   

To insure that data is accessed consistently across processors, developers MUST pack such data 
structures using the appropriate method for the compiler they are using. 

2.12.2 Byte Order Independence 

For data that is transported between processors, data should be sent in Network Byte Order.  Don’t 
assume a byte order (little- vs. big-endian) in the source code. 

When defining integer fields in structures that contain data stored in Network Byte Order (NBO), use 
the following defined typedefs: 

 
    nbo16    16 bit integer stored in NBO 
    unbo16   16 bite unsigned integer stored in NBO 
    nbo32    32 bit integer stored in NBO 
    unbo32   32 bit unsigned integer stored in NBO 

These typedefs are used to alert the developer that this data MUST be translated back into host byte 
order before it is evaluated.   

If the structure that the data is stored in is known to meet the alignment requirements of the host 
processor (see the alignment section), use the standard sockets macros/functions for byte order 
independence.  The 4 sockets macros for byte order independence are these: 

 
unbo32 htonl(uint32 hostlong);    convert host to network long 
unbo16 htons(uint16 hostshort);   convert host to network short 
uint32 ntohl(unbo32 netlong);     convert network to host long 
uint16 ntohs(unbo16 netshort);    convert network to host short 

They are documented in standard Unix texts on network processing. 

Note that these macros are defined for unsigned, but work on signed integers as well.. 

2.12.3 Byte Alignment 

The main issue with alignment is that a 16 (or 32) bit processor may only support loading integers if 
they are stored on a 16 (or 32) bit boundary.  Some processors support (in hardware) loading integers that 
are unaligned, but access to unaligned data may be slower.  

The x86 supports unaligned integer references.  The compiler for the x86 supports packed data 
structures on an 8-bit boundary.  

The 68302 does not support unaligned integer references.  The compiler for the 68302 will generate 
correct code for packed data structures, but it assumes that the top of the data structure is aligned to a 16-bit 
boundary.   



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 36 of 66 

Therefore, data structures that are exchanged between different processors (such as message buffers) 
MUST follow the following rules: 

1. Data structures MUST be defined using the PACKED_ATTR attribute to guarantee their 
size on both processors. 

2. Each programmer MUST guarantee that data buffers referenced by common code (such as 
message buffers) start on a memory location that is aligned to the processors needs (either 
16-bit or 32-bit).  For example, for messages coming from off board, this might mean 
making sure the local buffer that the message data is copied into starts on an aligned 
memory address.   NOTE:  malloc( ) guarantees byte alignment for the processor. 

2.12.4 No Inter-Processor Bit Fields 

You MUST NOT use bit fields for data structures that are transported between processors.  Instead of 
C-language bit fields, use integers and masks to define bit fields on inter-processor interfaces, because of 
the ambiguities in the ANSI C standard for bit fields.  (In ANSI C, the order of the bits is undefined, the 
alignment boundary following bit fields is undefined, and whether bit fields are signed or unsigned by 
default is undefined.) 

2.13 Diagnostic Code 

2.13.1 ASSERT 

NOTE WELL: ASSERT doesn’t follow our naming convention.  This is an oversight, not to 
be emulated. 

When writing code, people often make assumptions about values of variables: things like NULL 
pointers, variables in range, etc.  During debug, it is often helpful to include code to validate these 
assumptions, and notify you of any discrepancies.  For production code, however, you may not want to 
incur the memory and speed penalty of extensive assumption checking.  ANSI Standard C provides an 
“assert” macro, and an associated “assert.h” to support these needs.  The “assert” macro is 
conditionally defined according to the needs of the software being developed: during debug, it is defined to 
validate assumptions; for production code, it is defined as a null macro.  Therefore, you can include or 
exclude a wide range of debug code with a single conditional definition. 

These guidelines customize the standard “assert” macro with the ASSERT macro (upper case).  When 
your code is compiled in DEBUG mode, and an assumption fails at run-time, ASSERT prints an error 
message and notifies you (how/where the error message is displayed will vary depending on the target 
device).  Typically, the error message contains the file name and line number where the error occurred (this 
information is provided by the C preprocessor).  For example: 

 
PUBLIC void ut_kill(INOUT char *ptr) 
{   ASSERT(ptr != NULL, “’ptr’ is NULL!”); 
    ut_free(ptr); 
} 

The ASSERT macro looks something like this: 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 37 of 66 

 
//--------------------------------------------------------------------- 
   When compiled in DEBUG mode, the ASSERT macro evaluates the    
   conditional. If the conditional passes, nothing happens.  If the 
   conditional fails, ASSERT prints an error message with the file  
   name, line number, and custom error string, then continues with the 
   program. 
 
   When NOT in DEBUG mode, the ASSERT macro is a comment and does  
   nothing. 
    
   NOTE:  The trailing ELSE is required to make the macro appear as a  
   simple C statement to the invoking code.  
----------------------------------------------------------------------*/ 
#ifdef DEBUG 
    #define ASSERT ( condition, msg )                                  \ 
        if ( !(condition) )                                            \ 
        {                                                              \ 
            fprintf ( stderr, “ASSERT (“ #condition “) FAILED “        \ 
                              “[File “ __FILE__ “, Line %d]:\n\t%s\n”, \ 
                              __LINE__, (msg) );                       \ 
        }                                                              \ 
        else (void) 0        // required to avoid compiler warning  
#else  // DEBUG  
    #define ASSERT ( c, m ) // empty  
#endif // DEBUG  

2.13.2 Debug Code 

Some debug code or assumption checking code is more involved than ASSERT can handle.  For these 
cases, you can use #ifdef DEBUG (just like the ASSERT macro definition does) to selectively include 
arbitrary debug code.  Such debug code can be easily identified using text search utilities.  Also, put some 
description in the comment about what the debug code is trying to accomplish. 

Flag temporary or questionable code with “??”, so it’s easy to find with a text search. 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 38 of 66 

2.14 Tips & Gotchas 
This section contains some tips for writing C code that are not strictly guidelines, but may be useful to 

developers.  Some of these are items that may cause you (or someone else) to spin their wheels for a time. 

2.14.1 scanf() Problems 

Adapted from: http://c-faq.com/stdio/scanfprobs.html:  

Q: Why does everyone say not to use scanf()? What should I use instead?  

A: scanf() has a number of problems.  Use fgets() & sscanf(), and sometimes fscanf(), 
if you check its return value. 

scanf()’s %s format has the same problem that gets() has: it's hard to guarantee that the 
receiving buffer won't overflow.  More generally, scanf() is designed for relatively structured, formatted 
input (its name is in fact derived from ``scan formatted'').  It can tell you only approximately where it 
failed, and not at all how or why.  You have very little opportunity to do any error recovery.  

Yet a well-designed interface will allow for the possibility of reading just about anything – not just 
letters or punctuation when digits were expected, but also more or fewer characters than were expected, or 
no characters at all (i.e. just the RETURN key), or premature EOF, or anything.  It's nearly impossible to 
deal gracefully with all of these potential problems when using scanf(); it's far easier to read entire lines 
(with fgets() or the like), then interpret them, with say, sscanf().  If you do use any scanf variant, 
be sure to check the return value to make sure that the expected number of items were found.  Also, if you 
use %s, be sure to guard against buffer overflow.  

Note that criticisms of scanf are not necessarily indictments of fscanf and sscanf.  scanf reads 
from stdin, which is usually an interactive keyboard and is therefore the least constrained, leading to the 
most problems.  It's perfectly appropriate to parse strings with sscanf (as long as the return value is 
checked), because it's so easy to regain control, restart the scan, discard the input if it didn't match, etc.  
When a data file has a known format, on the other hand, it may be appropriate to read it with fscanf.  

2.14.2 Huge Object Files 

The compiler generates uncompressed initialization for the entirety of an initialized data structure, 
even if you only initialize a tiny fraction of it.  For example: 

 
PRIVATE int32 data[100000] = {1}; 

generates 400 kbytes of object code (100,000 * sizeof(int32)), because the compiler initializes the 
array with “1” in its first element, and zero in all its subsequent elements.  The initialization to zero is 
required by the C-language standard.  Such an initialization is probably better coded as: 

 
PRIVATE int32 data[100000]; 
 
// somewhere in initialization 
data[0] = 1;  // initialize .... 

2.14.3 Null Procedure Bodies 

The compiler will quietly generate null procedure bodies for procedures whose definition is terminated 
by a semi-colon.  This seems like a compiler bug, to me [ELM]. 

http://c-faq.com/stdio/scanfprobs.html


 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 39 of 66 

 
PUBLIC void foo(void) 
{ 
   ... lots of useful code that you would really like 
}; // OOPS  

2.14.4 'Make' can compile wrong file 

A spurious C file in your compile directory (e.g., ..\testdir) will be compiled in preference to the 
correct file in its rightful directory.  Close inspection of the compile invocation will show that the file is not 
preceded by a path name. 

2.14.5 Comparing Macro Constants 

Beware of comparing macro constants in #if statements, because all undefined macros in C-pre-
processor statements are replaced by “0” before expression evaluation.  For example: 

 
#if CPU == POWER_PC 

will evaluate to true if neither CPU nor POWER_PC are defined, because 0 == 0.  If you forget the 
header file, the above line produces no error, but includes POWER_PC code, which is probably wrong. 

2.14.6 Misleading vsprintf output 

With Tornado1.0.1, if you pass vsprintf (and probably its brethren printf and sprintf) a pointer to a 
string which contains non-printable characters, you will get “pointer is NULL” appended to the formatted 
result (even though the pointer is not null). 

2.14.7 Use ‘const’ for strings instead of #define 

[I question the validity of this. -ELM 5/2010]  In *.c files, consider ‘const’ to declare strings instead of 
#define.  The reason is that when you use ‘const’ to declare a string, the variable may be used in multiple 
places without replicating storage for the entire string (as opposed to a macro where the entire string may 
be replicated whenever it is referenced).  Some compilers will combine common strings, but explicitly 
declaring const strings insures it. 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 40 of 66 

3. C++ Coding 
C++ provides better tools to achieve code quality, maintainability, and portability.  You can take 

advantage of most C++ features without a “paradigm shift” or change in the good design practices you 
already know.   

3.1 C++ Coding Guidelines 
 Just use the new C++ language capabilities to help you write better code.  Designing complex 

class hierarchies is usually unnecessary, and can be confusing. 

 Consider using inline functions and templates instead of macros.  Both are more flexible, and 
provide greater error detection. 

 Write casts as function calls to the target data type; it’s much more clear:  
x = int(y) + int(z) 
instead of: x = (int)y + (int)z 

 Classes should not be typedef’d, since the classname is already effectively a typedef. 

 Use “class” only when you really mean it.  Use “typename” in templates, unless it must be a class 
type: 
template <typename T> func(T arg) ... 
template <typename T> class xyz 
{ ... } 
instead of: template <class T> ... 

 Use “explicit” on single-argument constructors to avoid implicit type conversion by the compiler.  
If you really want implicit type conversion, comment the constructor as such: 
class xx 
{   explicit xx(int x); 
    xx(double y);  // implicit converting constructor 
} 

 Use “mutable” very sparingly.  “mutable” is intended to allow a class method to modify a const 
class object in an invisible way, i.e., a way that the class user won’t see.  Its use is very rare.  In 
most cases, just admit openly that the class object is changing, by omitting “const” from the 
object’s declaration and the class method declaration.  Don’t use mutable to defeat the usual 
protection mechanisms of “const”. 

 “Mutable” can be thought of as saying that a class data member is “never const”, even if the class 
object is.  This sometimes allows compiler optimizations that would be disallowed without 
“mutable”.   

3.2 Object Oriented Programming 
This is a much used and abused term, with no definitive definition.  The goal of Object Oriented 

Programming (OOP) is to allow reusable code that is clean and maintainable.  The best definition I’ve seen 
of OOP is that  uses a language and approach with these properties: 

 User defined data types, called classes, which allow (1) a single object (data entity) to have 
multiple data items, and (2) provide user-defined methods (functions and operators) for 
manipulating objects of that class.  The data items are sometimes called properties.  Together, 
data items and methods are class members. 

 Information hiding: a class can define a public interface which hides the implementation details 
from the code which uses the class. 

 Overloading: the same named function or operator can be invoked on multiple data types, 
including both built-in and user-defined types.  The language chooses which of the same-named 
functions to invoke based on the data types of its arguments. 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 41 of 66 

 Inheritance: new data types can be created by extending existing data types.  The new derived 
class inherits all the data and methods of the existing base class, but can add data, and override 
any methods it chooses with its own, more specialized versions. 

 Polymorphism: this is more than overloading.  Polymorphism allows derived-class objects to be 
handled by (often older) code which only knows about the base class (i.e., which does not know of 
the existence of the derived class.)  Even though such code knows nothing of the derived class, the 
data object itself insures calling proper specialized methods for itself. 

In C++, polymorphism is implemented with virtual functions. 

OOP does not have to be a new “paradigm.”  It is usually more effective to make it an improvement on 
the good software engineering practices you already use. 

3.3 Type Casting 
From http://www.informit.com/guides/content.aspx?g=cplusplus&seqNum=134, summary: 

“C-style cast is neither safe nor explicit enough, as I have shown. It disables the compiler's type-safety 
checks, its syntactic form doesn’t express the intended conversion clearly, and it cannot perform a dynamic 
cast. For all these reasons, you should avoid using it in new code. 

Instead, use  

 static_cast for safe and rather portable casts,  

 const_cast to remove or add only the const/volatile qualifiers of an object,  

 reinterpret_cast for low-level, unsafe and nonportable casts.  

 dynamic_cast for conversions that must access the dynamic type of an object and RTTI [Run-
Time Type Information] capability-queries.” 

http://www.informit.com/guides/content.aspx?g=cplusplus&seqNum=134


 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 42 of 66 

4. Python Tips and Coding Guidelines 
This chapter gives a brief introduction to Python, and why you might want to consider using it.  It 

includes a simple, working program that demonstrates the 3 most common things to do with Python: 
command line arguments, reading files, and making plots.  You can start with this program and modify it 
however you like. 

4.1 Why Python? 
Python is handy for smaller scripts, because: 

 you don’t need to declare variables 

 variables are dynamically typed 

 there’s an interactive interpreter 

Python has handy features: 

 some handy string capabilities (but not as good as some claim) 

 arbitrarily large integers 

 sort-of classes (but no automatic parent-class constructor invocation) 

As your program grows in complexity, I think Python becomes clumsier.  However, some people think 
the opposite: that Python is good for large, multi-user developments. 

4.2 Getting Started With Python: Quick Tips 

4.2.1 Help on Installable Packages 

You can get help even if you haven’t loaded the package.  For example, 
help("pylab.legend") 

gives you help, even if you haven’t loaded pylab with something like 
from pylab import * or import pylab 

4.2.2 Strings, Lists, Tuples, and Sequences 

These are commonly confused, and have weird and arbitrary properties and methods.  Because they are 
so important, we summarize quickly here the commonly used features.  (From 
docs.python.org/tutorial/datastructures.html) 

A string is a sequence of characters.  Lists and tuples are sequences of arbitrary objects.  All are 
indexed with subscripts or slices, starting with 0 (up to length-1): e.g., “s[0]”, “s[len-1]”, 
“s[start,end+1]”. 

All are concatenated with the “+” operator, e.g. “a+b” 

Lists are created with square brackets, e.g. “[1,2,3]”.  Lists can be changed:  

list.append(x) Add an item to the end of the list; equivalent to a[len(a):] = [x] 

list.extend(L) Extend the list by appending all the items in the given list; equivalent to 
a[len(a):] = L. 

list.insert(i, x) Insert an item at a given position. The first argument is the index of the element 
before which to insert, so list.insert(0, x) inserts at the front of the list, and 
list.insert(len(a), x) is equivalent to list.append(x). 

list.pop([i]) Remove the item at the given position in the list, and return it.  If no index is specified, 
list.pop() removes and returns the last item in the list. 

http://docs.python.org/tutorial/datastructures.html


 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 43 of 66 

len(list) returns # objects in list 

Tuples are created with parentheses, e.g. “(1,2,3)”.  Tuples and strings are immutable, which means 
they cannot be changed.  Instead, you can assign a new tuple to a tuple variable (or string to string 
variable).  There’s usually no reason to use a tuple instead of a list, since lists are more flexible.  However, 
www.python.org/doc/faq/general/ notes: “Only immutable elements can be used as dictionary keys, and 
hence only tuples and not lists can be used as keys.” 

A sequence is a generic name for a string, list, tuple (and a few other data types).  Generally, one 
should avoid the word “sequence” and use either “string”, “list”, or “tuple” to be clear. 

Dictionaries are created with curly braces, “{ }”, not described here. 

4.2.3 Common String Methods 

From http://docs.python.org/library/stdtypes.html#string-methods: 

str.find(sub[, start[, end]])  Return the lowest index in the string where substring 
sub is found, such that sub is contained in the range [start, end].  Optional arguments start 
and end are interpreted as in slice notation.  Return -1 if sub is not found. 

str.replace(old, new[, count]) Return a copy of the string with all occurrences of 
substring old replaced by new.  If the optional argument count is given, only the first 
count occurrences are replaced. 

str.split([sep[, maxsplit]])  Return a list of the words in the string, using sep as 
the delimiter string.  If maxsplit is given, at most maxsplit splits are done (thus, the list 
will have at most maxsplit+1 elements).  If maxsplit is not specified, then there is no limit 
on the number of splits (all possible splits are made).  
 
If sep is not specified or is None, a different splitting algorithm is applied: runs of 
consecutive whitespace are regarded as a single separator, and the result will contain no 
empty strings at the start or end if the string has leading or trailing whitespace. 
Consequently, splitting an empty string or a string consisting of just whitespace with a 
None separator returns [].  For example, ' 1  2   3  '.split() returns 
['1', '2', '3'], and '  1  2   3  '.split(None, 1) returns ['1', 
'2   3  '].  
 
If sep is given, consecutive delimiters are not grouped together and are deemed to delimit 
empty strings (for example, '1,,2'.split(',') returns ['1', '', '2']).  The 
sep argument may consist of multiple characters (for example, 
'1<>2<>3'.split('<>') returns ['1', '2', '3']).  Splitting an empty 
string with a specified separator returns ['']. 

4.2.4 A Simple Text Filter Example 

A simple example of command line parameters and files: 

http://www.python.org/doc/faq/general/
http://docs.python.org/library/stdtypes.html#string-methods


 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 44 of 66 

""" Handmade simple file filter.  Manually edit for simple functions. 
 
Reads the given file, editing each line, and writing to stdout 
Strips all duplicate lines 
 
""" 
 
import sys              # argv[] 
 
# Remove lines that start with numbers, and whose 1st 4 characters match the prev 
line 
f=open(sys.argv[1], "rU")   # r=read, U=universal newline 
 
prev = "" 
for line in f: 
    if line == prev: 
        pass                # could be filled in with something 
    else: 
        print line,         # the comma prevents extra \n at end 
     
    prev = line 
 
f.close()                   # we're done with 'f' 

4.2.5 A Simple Example: Command-line Parameters, Files, Arrays, and Plotting 

You can edit this code to suit your needs: 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 45 of 66 

"""plot a line of Yn vs. Xn from a simple data file. 
A simple example of command-line parameters, files, arrays, and plotting 
 
plot <filename> 
 
file:  Xn Yn 
        :  : 
""" 
     
from pylab import *     # required for matplotlib (aka pylab) 
import sys              # argv[] 
import scipy.stats      # mean, samplestd 
import time             # strftime, localtime 
 
print "plotg:", time.strftime("%a %m/%d/%y %H:%M:%S", time.localtime()) 
labels=[]                       # the data column labels 
y=array([])                     # the 2D array of numbers read in 
name=''                         # filename to save plot in 
nlab = "record number"          # default label 
ylab='' 
f=open(sys.argv[1], "rU")   # readonly, Universal line termination 
 
for line in f: 
    if line[:1]=="#":  continue         # ignore comments 
 
    # It's a list of numbers 
    words = line 
    words = words.replace(","," ").split()  # remove commas, separate numbers 
 
    new = [float(s) for s in words]     # the new row of data 
    if len(y) == 0:                     # it's our first row 
        y = new 
    else: y = vstack( (y, new) )        # stack the new row below the previous 
 
# Now all the data are read into 2D array y[,]. 
f.close() 
 
# Now plot 'em 
xlabel("This is the abscissa") 
ylabel("This is the ordinate") 
title("This is the title") 
plot(y[:,0], y[:,1], linewidth=2, color="r", marker="x", label="fred") 
x=[1,2,3,4] 
z=[2,3,4,5] 
plot(x, z, linewidth=3, color="b", marker="o", label="ethel") 
     
grid(True) 
legend() 
savefig("plot.png")             # create PNG of plot 
show()                          # display plot to user 

With a data file named ‘values.dat’ consisting of: 
1 10 
2 5 
3 2.5 
4 1.25 
5 0.625 

Then executing ”plot.py values.dat” produces ‘plot.png’ which looks like this: 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 46 of 66 

 
See also:  http://matplotlib.sourceforge.net/ 

http://matplotlib.sourceforge.net/users/screenshots.html Excellent code examples, easily adapted. 

http://www.scipy.org/Cookbook/Matplotlib 

4.2.6 Memory Leaks 

Russell Owen’s suggestions for freeing up unused memory: 
From: Russell Owen [mailto:rowen@uw.edu]  
Sent: Tuesday, April 27, 2010 10:27 
Subject: Re: Memory leak still in ATUI 
 
Some things to check for: 
 
A long time ago I had memory leaks in TUI caused by keeping pointers to 

callback functions around when I no longer needed them. As I recall this was 
keeping memory for images around, so it was a bad leak.   

 
Lessons I learned: 
 

- If you are making use of callbacks, make sure you always free them (by 
setting the instance variable pointing to the callback function to None) 
when you no longer need to make such callbacks. 

- Using weak references from the weakref library (a standard part of Python) 
was invaluable in diagnosing the problem. 

- The snack sound library has known issues. The current RO package uses 
pygame instead to play sounds (but depending on whether you have been 
keeping up with TUI and RO, there may be enough changes to make this a 
difficult transition). 
 

http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/users/screenshots.html
http://www.scipy.org/Cookbook/Matplotlib
mailto:rowen@uw.edu


 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 47 of 66 

I will add: I doubt the problem is the garbage collector not being run. It 
is far more likely a case that you are causing memory leaks (directly or 
indirectly) by explicitly keeping things around. 

 
However, there is a gc library that interacts with the garbage collector. 

I don't recall it being very easy to use, but you may be able to use it to 
locate the memory that is not being freed. You can also use it to explicitly 
trigger a garbage collection, but my guess is that will not help. 

 
Out of curiosity: have you kept up with Python? 2.6.x is current. 2.5.x is 

quite reasonable. I would not use anything older unless you are desperate. 
Older is slower and may have relevant bugs (though again, my bet is on a 
coding error that is keeping memory around you don't actually want -- either 
in your own code or as you say, in Hippodraw). 

4.3 Style Guide 
Guido van Rossum, the author of Python, has created the following style guide for python: 

http://www.python.org/dev/peps/pep-0008/ 

This document was adapted from Guido's original Python Style Guide essay, with some additions from 
Barry's style guide.  [Thanks to James Battat of the APOLLO project for this link]. 

These Python guides are consistent with the philosophy of all coding guidelines: 

 Code is read many more times than it is written. 

 Consistency with this style guide is important.  

 Consistency within a project is more important.   

 Know when to be inconsistent. 

[Eric M: I especially think the recommendation against mixing tabs and spaces is wrong.  For one 
thing, the main goal of the guidelines is readability, and since tabs and spaces are both white, they both 
equally provide readability.  The proper recommendation is that if you use tabs, they must stop every 8 
columns.  This insures the code is readable when printed with standard 8-column tab interpretation. 

Every editor I’ve seen easily handles mixed tabs and spaces.  The easiest way to achieve the 
recommended 4-column indent is to use a tab for 2-level (= 8-column) indentation.  It helps readability 
greatly to have your comments on the ends of lines line up, by using a tab to put them there.  It is then 
much easier to keep the comments aligned, as they are insensitive to small changes in the code line before 
them.  Finally, good editors can easily convert between tabs and spaces, anyway.] 

4.3.1 Guido van Rossum’s Style Guide 

This document gives coding conventions for the Python code comprising the standard library in the 
main Python distribution.  Please see the companion informational PEP describing style guidelines for the 
C code in the C implementation of Python[1].  [A PEP is a Python Enhancement Proposal; see 
http://www.python.org/dev/peps/. ] 

This document was adapted from Guido’s original Python Style Guide essay[2], with some additions 
from Barry’s style guide[5].  Where there’s conflict, Guido’s style rules for the purposes of this PEP.  This 
PEP may still be incomplete (in fact, it may never be finished <wink>). 

A Foolish Consistency is the Hobgoblin of Little Minds 

    One of Guido’s key insights is that code is read much more often than it is written.  The guidelines 
provided here are intended to improve the readability of code and make it consistent across the wide 
spectrum of Python code.  As PEP 20 [6] says,  

“Readability counts”. 

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/


 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 48 of 66 

    A style guide is about consistency.  Consistency with this style guide is important.  Consistency 
within a project is more important. Consistency within one module or function is most important.  

    But most importantly: know when to be inconsistent—sometimes the style guide just doesn’t apply.  
When in doubt, use your best judgment.  Look at other examples and decide what looks best.  And don’t 
hesitate to ask! 

    Two good reasons to break a particular rule: 

(1) When applying the rule would make the code less readable, even for someone who is used to 
reading code that follows the rules. 

(2) To be consistent with surrounding code that also breaks it (maybe for historic reasons) -- although 
this is also an opportunity to clean up someone else’s mess (in true XP style). 

4.3.2 Code lay-out 

  Indentation 

    Use 4 spaces per indentation level. 

    For really old code that you don't want to mess up, you can continue to use 8-space tabs. 

  Tabs or Spaces? 

Never mix tabs and spaces. ?? 

[Eric M: I especially think this recommendation against mixing tabs and spaces is wrong.  For one 
thing, the main goal of the guidelines is readability, and since tabs and spaces are both white, they have 
nothing to do with readability.  The proper recommendation is that if you use tabs, they must stop every 8 
columns.  This insures the code is readable when edited and printed with standard 8-column tab 
interpretation. 

Every editor I’ve seen has no problem with mixed tabs and spaces.  The easiest way to achieve the 
recommended 4-column indent is to use a tab for 2-level (= 8-column) indentation.  It also help greatly to 
have your comments on the ends of lines line up, by using a tab to put them there.  It is then much easier to 
keep the comments aligned, as they are insensitive to small changes in the code line before them.  Good 
editors can easily convert between tabs and spaces, anyway, so it shouldn’t bother anyone.] 

    The most popular way of indenting Python is with spaces only.  The second-most popular way is 
with tabs only.  Code indented with a mixture of tabs and spaces should be converted to using spaces 
exclusively.  When invoking the Python command line interpreter with the -t option, it issues warnings 
about code that illegally [ELM: unconventionally] mixes tabs and spaces.  When using -tt these warnings 
become errors.  These options are highly recommended [ELM: discouraged]! 

    For new projects, spaces-only are strongly recommended over tabs.  Most editors have features that 
make this easy to do. 

  Maximum Line Length 

    Limit all lines to a maximum of 79 characters. 

    There are still many devices around that are limited to 80 character lines; plus, limiting windows to 
80 characters makes it possible to have several windows side-by-side.  The default wrapping on such 
devices looks ugly.  Therefore, please limit all lines to a maximum of 79 characters.  For flowing long 
blocks of text (docstrings or comments), limiting the length to 72 characters is recommended. 

    The preferred way of wrapping long lines is by using Python's implied line continuation inside 
parentheses, brackets and braces.  If necessary, you can add an extra pair of parentheses around an 
expression, but sometimes using a backslash looks better.  Make sure to indent the continued line 
appropriately.  Some examples: 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 49 of 66 

 
    class Rectangle(Blob): 
 
        def __init__(self, width, height, 
                     color='black', emphasis=None, highlight=0): 
            if width == 0 and height == 0 and \ 
               color == 'red' and emphasis == 'strong' or \ 
               highlight > 100: 
                raise ValueError("sorry, you lose") 
            if width == 0 and height == 0 and (color == 'red' or 
                                               emphasis is None): 
                raise ValueError("I don't think so") 
            Blob.__init__(self, width, height, 
                          color, emphasis, highlight) 

  Blank Lines 

    Separate top-level function and class definitions with two blank lines. 

    Method definitions inside a class are separated by a single blank line. 

    Extra blank lines may be used (sparingly) to separate groups of related functions.  Blank lines may 
be omitted between a bunch of related one-liners (e.g. a set of dummy implementations). 

    Use blank lines in functions, sparingly, to indicate logical sections. 

    Python accepts the control-L (i.e. ^L) form feed character as whitespace; 

    Many tools treat these characters as page separators, so you may use them to separate pages of 
related sections of your file. 

4.3.3   Encodings (PEP 263) 

Code in the core Python distribution should always use the ASCII or Latin-1 encoding (a.k.a. ISO-
8859-1). 

Files using ASCII should not have a coding cookie.  Latin-1 should only be used when a comment or 
docstring needs to mention an author name that requires Latin-1; otherwise, using \x escapes is the 
preferred way to include non-ASCII data in string literals. 

4.3.4 Imports 

 Imports should usually be on separate lines, e.g.: 
        Yes: import os 
             import sys 
        No:  import sys, os 

It's okay to say this though: 
        from subprocess import Popen, PIPE 

 Imports are always put at the top of the file, just after any module comments and docstrings, and 
before module globals and constants. 

      Imports should be grouped in the following order: 

1. standard library imports 

2. related third party imports 

3. local application/library specific imports 

      You should put a blank line between each group of imports. 

      Put any relevant __all__ specification after the imports. 

 Relative imports for intra-package imports are highly discouraged. 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 50 of 66 

Always use the absolute package path for all imports.  Even now that PEP 328 [7] is fully implemented 
in Python 2.5, its style of explicit relative imports is actively discouraged; absolute imports are more 
portable and usually more readable. 

 When importing a class from a class-containing module, it's usually okay to spell this 
        from myclass import MyClass 
        from foo.bar.yourclass import YourClass 

  If this spelling causes local name clashes, then spell them 
        import myclass 
        import foo.bar.yourclass 

  and use "myclass.MyClass" and "foo.bar.yourclass.YourClass" 

4.3.5 Whitespace in Expressions and Statements 

  Pet Peeves 

    Avoid extraneous whitespace in the following situations: 

 Immediately inside parentheses, brackets or braces. 
      Yes: spam(ham[1], {eggs: 2}) 
      No:  spam( ham[ 1 ], { eggs: 2 } ) 

 Immediately before a comma, semicolon, or colon: 
      Yes: if x == 4: print x, y; x, y = y, x 
      No:  if x == 4 : print x , y ; x , y = y , x 

 Immediately before the open parenthesis that starts the argument list of a function call: 
      Yes: spam(1) 
      No:  spam (1) 

 Immediately before the open parenthesis that starts an indexing or slicing: 
      Yes: dict['key'] = list[index] 
      No:  dict ['key'] = list [index] 

 More than one space around an assignment (or other) operator to align it with another. 
      Yes: 
          x = 1 
          y = 2 
          long_variable = 3 
      No: 
          x             = 1 
          y             = 2 
          long_variable = 3 

  Other Recommendations 

 Always surround these binary operators with a single space on either side: assignment (=), 
augmented assignment (+=, -= etc.), comparisons (==, <, >, !=, <>, <=, >=, in, not in, is, is not), 
Booleans (and, or, not). 

 Use spaces around arithmetic operators: 
      Yes: 
          i = i + 1 
          submitted += 1 
          x = x * 2 - 1 
          hypot2 = x * x + y * y 
          c = (a + b) * (a - b) 
      No: 
          i=i+1 
          submitted +=1 
          x = x*2 - 1 
          hypot2 = x*x + y*y 
          c = (a+b) * (a-b) 

 Don’t use spaces around the ‘=’ sign when used to indicate a keyword argument or a default 
parameter value. 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 51 of 66 

      Yes: 
          def complex(real, imag=0.0): 
              return magic(r=real, i=imag) 
      No: 
          def complex(real, imag = 0.0): 
              return magic(r = real, i = imag) 

 Compound statements (multiple statements on the same line) are generally discouraged. 
      Yes: 
          if foo == 'blah': 
              do_blah_thing() 
          do_one() 
          do_two() 
          do_three() 

      Rather not: 
          if foo == 'blah': do_blah_thing() 
          do_one(); do_two(); do_three() 

 While sometimes it's okay to put an if/for/while with a small body on the same line, never do this 
for multi-clause statements.  Also avoid folding such long lines! 

      Rather not: 
          if foo == 'blah': do_blah_thing() 
          for x in lst: total += x 
          while t < 10: t = delay() 

      Definitely not: 
          if foo == 'blah': do_blah_thing() 
          else: do_non_blah_thing() 
 
          try: something() 
          finally: cleanup() 
 
          do_one(); do_two(); do_three(long, argument, 
                                       list, like, this) 
 
          if foo == 'blah': one(); two(); three() 

Use the 0 < x < 5 syntax to check for a number within bounds; it’s much easier to read than  
          if 0 < x and x < 5 ... 

4.3.6 Comments 

    Comments that contradict the code are worse than no comments.  Always make a priority of keeping 
the comments up-to-date when the code changes! 

    Comments should be complete sentences.  If a comment is a phrase or sentence, its first word should 
be capitalized, unless it is an identifier that begins with a lower case letter (never alter the case of 
identifiers!). 

    If a comment is short, the period at the end can be omitted.  Block comments generally consist of 
one or more paragraphs built out of complete sentences, and each sentence should end in a period. 

    You should use two spaces after a sentence-ending period. 

    When writing English, Strunk and White apply. 

    Python coders from non-English speaking countries: please write your comments in English, unless 
you are 120% sure that the code will never be read by people who don't speak your language. 

  Block Comments 

    Block comments generally apply to some (or all) code that follows them, and are indented to the 
same level as that code.  Each line of a block comment starts with a # and a single space (unless it is 
indented text inside the comment). 

    Paragraphs inside a block comment are separated by a line containing a single #. 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 52 of 66 

  Inline Comments 

    Use inline comments sparingly.  [I (Eric M) strongly disagree with this.  Use inline comments 
profusely, but only when they communicate real information.  Don’t state the obvious.] 

    An inline comment is a comment on the same line as a statement.  Inline comments should be 
separated by at least two spaces from the statement.  They should start with a # and a single space. 

    Inline comments are unnecessary and in fact distracting if they state the obvious.  Don't do this: 
        x = x + 1                 # Increment x 

    But sometimes, this is useful: 
        x = x + 1                 # Compensate for border 

4.3.7 Documentation Strings 

    Conventions for writing good documentation strings (a.k.a. "docstrings") are immortalized in PEP 
257 [3]. 

 Write docstrings for all public modules, functions, classes, and methods.  Docstrings are not 
necessary for non-public methods, but you should have a comment that describes what the method 
does.  This comment should appear after the "def" line. 

 PEP 257 describes good docstring conventions.  Note that most importantly, the """ that ends a 
multiline docstring should be on a line by itself, and preferably preceded by a blank line, e.g.: 
      """Return a foobang 
 
      Optional plotz says to frobnicate the bizbaz first. 
 
      """ 

 For one liner docstrings, it's okay to keep the closing """ on the same line. 

4.3.8 Version Bookkeeping 

    If you have to have Subversion, CVS, or RCS crud in your source file, do it as follows. 
        __version__ = "$Revision: 53621 $" 
        # $Source$ 

    These lines should be included after the module's docstring, before any other code, separated by a 
blank line above and below. 

4.3.9 Naming Conventions 

    The naming conventions of Python's library are a bit of a mess, so we'll never get this completely 
consistent—nevertheless, here are the currently recommended naming standards.  New modules and 
packages (including third party frameworks) should be written to these standards, but where an existing 
library has a different style, internal consistency is preferred. 

Descriptive: Naming Styles 

    There are a lot of different naming styles.  It helps to be able to recognize what naming style is being 
used, independently from what they are used for. 

    The following naming styles are commonly distinguished: 

 b (single lowercase letter) 

 B (single uppercase letter) 

 lowercase 

 lower_case_with_underscores 

 UPPERCASE 

 UPPER_CASE_WITH_UNDERSCORES 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 53 of 66 

 CapitalizedWords (or CapWords, or CamelCase—so named because of the bumpy look of its 
letters[4]).  This is also sometimes known as StudlyCaps. 

      Note: When using abbreviations in CapWords, capitalize all the letters of the abbreviation.  Thus 
HTTPServerError is better than HttpServerError. 

 mixedCase (differs from CapitalizedWords by initial lowercase character!) 

 Capitalized_Words_With_Underscores (ugly!) 

    There's also the style of using a short unique prefix to group related names together.  This is not used 
much in Python, but it is mentioned for completeness.  For example, the os.stat() function returns a tuple 
whose items traditionally have names like st_mode, st_size, st_mtime and so on.  (This is done to 
emphasize the correspondence with the fields of the POSIX system call struct, which helps programmers 
familiar with that.) 

    The X11 library uses a leading X for all its public functions.  In Python, this style is generally 
deemed unnecessary because attribute and method names are prefixed with an object, and function names 
are prefixed with a module name. 

    In addition, the following special forms using leading or trailing underscores are recognized (these 
can generally be combined with any case convention): 

 _single_leading_underscore: weak "internal use" indicator.  E.g. "from M import *" does not 
import objects whose name starts with an underscore. 

 single_trailing_underscore_: used by convention to avoid conflicts with Python keyword, e.g. 

 
      Tkinter.Toplevel(master, class_='ClassName') 

 __double_leading_underscore: when naming a class attribute, invokes name mangling (inside 
class FooBar, __boo becomes _FooBar__boo; see below). 

 __double_leading_and_trailing_underscore__: "magic" objects or attributes that live in user-
controlled namespaces.  E.g. __init__, __import__ or __file__.  Never invent such names; only use 
them as documented. 

  Prescriptive: Naming Conventions 

    Names to Avoid 

      Never use the characters `l' (lowercase letter el), `O' (uppercase letter oh), or `I' (uppercase letter 
eye) as single character variable names.  In some fonts, these characters are indistinguishable from the 
numerals one and zero.  When tempted to use `l', use `L' instead. 

    Package and Module Names 

      Modules should have short, all-lowercase names.  Underscores can be used in the module name if 
it improves readability.  Python packages should also have short, all-lowercase names, although the use of 
underscores is discouraged. 

      Since module names are mapped to file names, and some file systems are case insensitive and 
truncate long names, it is important that module names be chosen to be fairly short—this won't be a 
problem on Unix, but it may be a problem when the code is transported to older Mac or Windows versions, 
or DOS. 

      When an extension module written in C or C++ has an accompanying Python module that provides 
a higher level (e.g. more object oriented) interface, the C/C++ module has a leading underscore (e.g. 
_socket). 

    Class Names 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 54 of 66 

      Almost without exception, class names use the CapWords convention.  Classes for internal use 
have a leading underscore in addition. 

    Exception Names 

      Because exceptions should be classes, the class naming convention applies here.  However, you 
should use the suffix "Error" on your exception names (if the exception actually is an error). 

    Global Variable Names 
      (Let's hope that these variables are meant for use inside one module only.)  The conventions are 

about the same as those for functions. 

      Modules that are designed for use via "from M import *" should use the __all__ mechanism to 
prevent exporting globals, or use the the older convention of prefixing such globals with an underscore 
(which you might want to do to indicate these globals are "module non-public"). 

    Function Names 

      Function names should be lowercase, with words separated by underscores as necessary to improve 
readability.  mixedCase is allowed only in contexts where that's already the prevailing style (e.g. 
threading.py), to retain backwards compatibility. 

    Function and method arguments 

      Always use 'self' for the first argument to instance methods. 

      Always use 'cls' for the first argument to class methods. 

      If a function argument's name clashes with a reserved keyword, it is generally better to append a 
single trailing underscore rather than use an abbreviation or spelling corruption.  Thus "print_" is better 
than "prnt".  (Perhaps better is to avoid such clashes by using a synonym.) 

    Method Names and Instance Variables 

      Use the function naming rules: lowercase with words separated by underscores as necessary to 
improve readability. 

      Use one leading underscore only for non-public methods and instance variables. 

      To avoid name clashes with subclasses, use two leading underscores to invoke Python's name 
mangling rules. 

      Python mangles these names with the class name: if class Foo has an attribute named __a, it cannot 
be accessed by Foo.__a.  (An insistent user could still gain access by calling Foo._Foo__a.)  Generally, 
double leading underscores should be used only to avoid name conflicts with attributes in classes designed 
to be subclassed. 

      Note: there is some controversy about the use of __names (see below). 

    Designing for inheritance 

      Always decide whether a class's methods and instance variables (collectively: "attributes") should 
be public or non-public.  If in doubt, choose non-public; it's easier to make it public later than to make a 
public attribute non-public. 

      Public attributes are those that you expect unrelated clients of your class to use, with your 
commitment to avoid backward incompatible changes.  Non-public attributes are those that are not intended 
to be used by third parties; you make no guarantees that non-public attributes won't change or even be 
removed. 

      We don't use the term "private" here, since no attribute is really private in Python (without a 
generally unnecessary amount of work). 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 55 of 66 

      Another category of attributes are those that are part of the "subclass API" (often called "protected" 
in other languages).  Some classes are designed to be inherited from, either to extend or modify aspects of 
the class's behavior.  When designing such a class, take care to make explicit decisions about which 
attributes are public, which are part of the subclass API, and which are truly only to be used by your base 
class. 

      With this in mind, here are the Pythonic guidelines: 

 Public attributes should have no leading underscores. 

 If your public attribute name collides with a reserved keyword, append a single trailing underscore 
to your attribute name.  This is preferable to an abbreviation or corrupted spelling.  (However, 
notwithstanding this rule, 'cls' is the preferred spelling for any variable or argument which is 
known to be a class, especially the first argument to a class method.) 

        Note 1: See the argument name recommendation above for class methods. 

 For simple public data attributes, it is best to expose just the attribute name, without complicated 
accessor/mutator methods.  Keep in mind that Python provides an easy path to future 
enhancement, should you find that a simple data attribute needs to grow functional behavior.  In 
that case, use properties to hide functional implementation behind simple data attribute access 
syntax. 

        Note 1: Properties only work on new-style classes. 

        Note 2: Try to keep the functional behavior side-effect free, although side-effects such as caching 
are generally fine. 

        Note 3: Avoid using properties for computationally expensive operations; the attribute notation 
makes the caller believe that access is (relatively) cheap. 

 If your class is intended to be subclassed, and you have attributes that you do not want subclasses 
to use, consider naming them with double leading underscores and no trailing underscores.  This 
invokes Python's name mangling algorithm, where the name of the class is mangled into the 
attribute name.  This helps avoid attribute name collisions should subclasses inadvertently contain 
attributes with the same name. 

        Note 1: Note that only the simple class name is used in the mangled name, so if a subclass 
chooses both the same class name and attribute name, you can still get name collisions. 

        Note 2: Name mangling can make certain uses, such as debugging and __getattr__(), less 
convenient.  However the name mangling algorithm is well documented and easy to perform manually. 

        Note 3: Not everyone likes name mangling.  Try to balance the need to avoid accidental name 
clashes with potential use by advanced callers. 

4.3.10 Programming Recommendations 

 Code should be written in a way that does not disadvantage other implementations of Python 
(PyPy, Jython, IronPython, Pyrex, Psyco, and such). 

      For example, do not rely on CPython's efficient implementation of in-place string concatenation for 
statements in the form a+=b or a=a+b.  Those statements run more slowly in Jython.  In performance 
sensitive parts of the library, the ''.join() form should be used instead.  This will ensure that concatenation 
occurs in linear time across various implementations.  [Eric M: use what is easiest to read.  99% of the 
time, performance is irrelevant.  Only worry about performance if it actually matters.] 

 Comparisons to singletons like None should always be done with 'is' or 'is not', never the equality 
operators.  [Why??] 

      Also, beware of writing "if x" when you really mean "if x is not None" -- e.g. when testing whether 
a variable or argument that defaults to None was set to some other value.  The other value might have a 
type (such as a container) that could be false in a boolean context! 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 56 of 66 

 Use class-based exceptions. 

      String exceptions in new code are forbidden, because this language feature is being removed in 
Python 2.6. 

      Modules or packages should define their own domain-specific base exception class, which should 
be subclassed from the built-in Exception class.  Always include a class docstring.  E.g.: 

        class MessageError(Exception): 
            """Base class for errors in the email package.""" 

      Class naming conventions apply here, although you should add the suffix "Error" to your exception 
classes, if the exception is an error.  Non-error exceptions need no special suffix. 

 When raising an exception, use "raise ValueError('message')" instead of the older form "raise 
ValueError, 'message'". 

      The paren-using form is preferred because when the exception arguments are long or include string 
formatting, you don't need to use line continuation characters thanks to the containing parentheses.  The 
older form will be removed in Python 3000. 

 When catching exceptions, mention specific exceptions whenever possible instead of using a bare 
'except:' clause. 

      For example, use: 
          try: 
              import platform_specific_module 
          except ImportError: 
              platform_specific_module = None  

      A bare 'except:' clause will catch SystemExit and KeyboardInterrupt exceptions, making it harder 
to interrupt a program with Control-C, and can disguise other problems.  If you want to catch all exceptions 
that signal program errors, use 'except StandardError:'. 

      A good rule of thumb is to limit use of bare 'except' clauses to two cases: 

1) If the exception handler will be printing out or logging the traceback; at least the user will be 
aware that an error has occurred. 

2) If the code needs to do some cleanup work, but then lets the exception propagate upwards with 
'raise'.  'try...finally' is a better way to handle this case. 

 Use string methods instead of the string module. 

      String methods are always much faster and share the same API with unicode strings.  Override this 
rule if backward compatibility with Pythons older than 2.0 is required. 

 Use ''.startswith() and ''.endswith() instead of string slicing to check for prefixes or suffixes.  
startswith() and endswith() are cleaner and less error prone.  For example: 
        Yes: if foo.startswith('bar'): 
        No:  if foo[:3] == 'bar': 

      The exception is if your code must work with Python 1.5.2 (but let's hope not!). 

 Object type comparisons should always use isinstance() instead of comparing types directly. 
        Yes: if isinstance(obj, int): 
        No:  if type(obj) is type(1): 

      When checking if an object is a string, keep in mind that it might be a unicode string too!  In 
Python 2.3, str and unicode have a common base class, basestring, so you can do: 

        if isinstance(obj, basestring): 

      In Python 2.2, the types module has the StringTypes type defined for that purpose, e.g.: 
        from types import StringTypes 
        if isinstance(obj, StringTypes): 

      In Python 2.0 and 2.1, you should do: 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 57 of 66 

        from types import StringType, UnicodeType 
        if isinstance(obj, StringType) or \ 
           isinstance(obj, UnicodeType) : 

 For sequences, (strings, lists, tuples), use the fact that empty sequences are false. 
      Yes: if not seq: 
           if seq: 
      No: if len(seq) 
          if not len(seq) 

 Don't write string literals that rely on significant trailing whitespace.  Such trailing whitespace is 
visually indistinguishable and some editors (or more recently, reindent.py) will trim them. 

 Don't compare boolean values to True or False using == 
        Yes:   if greeting: 
        No:    if greeting == True: 
        Worse: if greeting is True: 

References 

    [1] PEP 7, Style Guide for C Code, van Rossum 

    [2] http://www.python.org/doc/essays/styleguide.html 

    [3] PEP 257, Docstring Conventions, Goodger, van Rossum 

    [4] http://www.wikipedia.com/wiki/CamelCase 

    [5] Barry's GNU Mailman style guide 

        http://barry.warsaw.us/software/STYLEGUIDE.txt 

    [6] PEP 20, The Zen of Python 

    [7] PEP 328, Imports: Multi-Line and Absolute/Relative 

Copyright:  This document has been placed in the public domain. 

4.4 Optimization and Profiling 
There is a python module called "profile" which can determine time spent in various parts of a 

program: 
 
profile and cProfile 
  http://docs.python.org/lib/module-profile.html 

(Thanks to James Battat.) 

http://www.python.org/doc/essays/styleguide.html
http://www.wikipedia.com/wiki/CamelCase
http://barry.warsaw.us/software/STYLEGUIDE.txt
http://docs.python.org/lib/module-profile.html


 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 58 of 66 

5. Fortran Coding Guidelines 
As with all chapters, we assume you know most of Fortran.  These guidelines help you write code 

reliably and quickly.  Similarly, they improve the efficiency of program maintenance for you, and your 
successors.  This is not a tutorial on Fortran. 

Glossary 

procedure a FUNCTION, SUBROUTINE, or ENTRY. 

program unit a main PROGRAM, MODULE, FUNCTION, SUBROUTINE, or (deprecated) BLOCK 
DATA. 

subprogram a FUNCTION or SUBROUTINE. 

5.1.1 Use Fortran 90, or Higher 

Use Fortran 90 or higher.  Do not worry about being F77 “compatible.”   
Do not feel compelled to learn F95 or higher. 

Fortran 90 is over 20 years old.  Everybody supports it.  Use it.  For scientists, the important changes 
came between F77 and F90.  Later versions of Fortran add more exotic features that are of little use to 
scientists, so don’t worry about learning F95 or higher. 

5.1.2 Avoid Explicit Interfaces 

Stunningly, F90 has no way to verify that external interfaces declared in an INTERFACE section agree 
with the subprogram definitions.  (C/C++ has supported this for decades.)  Some experts recommend 
copying and pasting the subprogram definition code into every INTERFACE section that needs it [Ellis, 
1990, p??].  Of course, if the definition ever changes, one hopes the software developer remembers to 
update the INTERFACE sections of all the code that references the subprogram.  If she can even find them 
all.  This is a terrible way to maintain code. 

Therefore, avoid explicit interfaces.  They are hard to maintain, and any discrepancies result in subtle 
failures that can be very hard to find.  However, this guideline demands the next topic: multi -file modules. 

5.1.3 Fortran Include Files 

INCLUDE is not standard Fortran, but every known compiler supports it.  In particular, the filenames 
may not be portable, so it is best to use simple filenames without directory paths, drive letter, or volume 
names.  Use compiler switches to tell the compiler where to find the include files.  This: 

 
INCLUDE ‘g1.inc’ 

Not this: 
INCLUDE ‘c:\project\g1.inc’ ! Bad: file path not portable 

 

5.1.4 Multi-file Modules 

To avoid explicit interfaces, all subprograms in a module must be compiled together as a single 
module definition.  Sadly, Fortran 90 has no standard way to write multi-file modules (modules comprising 
more than one source file).  The best way I’ve seen recommended for multi-file modules is to simply 
‘include’ all the files into the module definition: 

g.f90: 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 59 of 66 

MODULE g 
! Global variables 
REAL a, b, c 
 
CONTAINS 
INCLUDE ’g1.inc’ ! Simple filename is more portable to other platforms 
INCLUDE ’g2.inc’ 
INCLUDE ’g3.inc’ 
END MODULE g 
 

g1.inc: 
REAL FUNCTION x(whatever...) 
 ... definition of x() 
END FUNCTION x 
REAL FUNCTION y(whatever...) 
 ... definition of y() 
END FUNCTION y 
: 

g2.inc: 
REAL FUNCTION z(whatever...) 
 ... definition of z() 
END FUNCTION z 
: 

Etc. 

Note that ‘include’ is not standard Fortran, but every known compiler supports it.  In particular, the 
filenames may not be portable, so it is best to use simple filenames without directory paths, drive letter, or 
volume names.  Use compiler switches to tell the compiler where to find the include files.  This: 

 
INCLUDE ‘g1.inc’ 

Not this: 
INCLUDE ‘c:\project\g1.inc’ ! Bad: file path not portable 

5.1.5 A Legitimate Use of EQUIVALENCE 

The single most important improvement over F77 is to avoid COMMON and most EQUIVALENCE 
statements.  COMMON is completely obsolete, and EQUIVALENCE is mostly obsolete.  One legitimate 
modern use of EQUIVLANCE is to provide simple aliases to an array of values.   

For example, many numeric processing functions take many parameters as an input (not Fortran 
PARAMETERs), and these parameters are often passed as a single array, which is very legitimate in some 
cases.  However, the higher level code may refer to specific parameters by their specific meanings.  Such 
as: 

REAL parms(20) ! temperature, pressure, # particles, expansion coefficients 
EQUIVALENCE (parms(1),temp), (parms(2),pressure), (parms(3), nparticle) 

5.1.6 Avoid Renaming MODULE Entities 

One of the benefits of MODULEs over the obsolete COMMON is that MODULEs help the same 
variable have the same name in all program units.  If you use the renaming capability, you defeat that 
consistency, making code error prone, sometimes in very subtle ways.  Avoid renaming program entities. 

5.2 Upgrading Old F77 Code 

5.2.1 Freely Upgrade to Fortran 90 

You will inherit much F77 code, which itself inherited F66 code.  Freely upgrade it with F90 features 
as you need.  Do not constrain yourself to being F77 compatible.  It will hurt you. 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 60 of 66 

5.2.2 Replace COMMON with MODULEs; Avoid EQUIVALENCE 

Replace COMMON with MODULEs.  Avoid EQUIVALENCE. 

COMMON and EQUIVALENCE were invented over half a century ago when computer memory was 
so small it couldn’t hold all the variables at once.  Today, it causes much confusion because the same 
variables can have different names in different parts of the code.  Despicably, some old code does not type 
its variables consistently, and relies on REAL variables occupying the same amount of memory as 
INTEGER. 

However, see the legitimate use of EQUIVALENCE earlier in this chapter. 

5.3 Gotchas, Tips, and Tricks 

5.3.1 Local Initializers Only Work Once 

(Adapted from http://www.cs.rpi.edu/~szymansk/OOF90/bugs.html).   

One must be careful when initializing a locally declared variable, especially if you are a C 
programmer:  

         real function blah(v) 
         real v 
  ! THE WRONG WAY 
         real :: ke = 0.0 ! Initialization at load time, not run time! 
... 
         end function blah 

Instead use: 
         real function blah(v) 
         real v 
  ! THE RIGHT WAY 
         real :: ke 
         ke = 0.  ! Initialize to zero on every call 
... 
         end function blah 

Explanation:  A local variable that is initialized when declared has an implicit SAVE attribute. ‘ke’ is 
initialized only at load time.  On subsequent calls the old value of ‘ke’ is retained.  This is a real surprise to 
C programmers, since a similar syntax in C initializes the variable on every call. 

To avoid confusion it is best to explicitly add the SAVE attribute to such locally initialized variables, 
even though this is redundant.  

 real, save :: ke = 0. 

http://www.cs.rpi.edu/~szymansk/OOF90/bugs.html


 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 61 of 66 

6. Assembly Coding Guidelines 
Assembly coding requires tracking CPU resources (especially registers) more closely than is possible 

(or necessary) in C.  Therefore, each procedure MUST include a “Modifies” section or a “Preserves” 
section (but not both) in its header to clearly state what CPU resources are used and changed by the 
procedure.  The caller can safely assume that any CPU resources not “modified” by a procedure are 
preserved.  Conversely, callers MUST assume that any CPU resource not “preserved” is modified and 
undefined after the call. 

6.1 Assembly File Headers 
The C-compiler defines not only the calling sequence, but also what CPU resources procedures must 

preserve, and what may be modified.  All source files with C-callable routines MUST document in the file 
header the compiler for which they were written: 

Compiler: gcc 2.5.4b 

6.2 Assembly-Callable Routines 
Each CPU type must define what resources are covered by the Modifies/Preserves header comments.  

For example, most processor registers must be considered “resources,” and are covered by the header.  
However, since arithmetic condition codes often change on every instruction, they are usually excluded, 
and assumed not preserved.  The key is that each CPU type must  have a well-known list of what resources 
are covered by procedure headers. 

Callers MUST NOT use side effects of the routine.  If a routine produces an intentional output, it MUST 
be listed in the “Out:” section of the routine header.  E.g., 

 
;--------------------------------------------------------------- 
Clear an area of memory. 
 
In: DI pointer to start of memory to be cleared 
 CX count of bytes to clear 
 
Out: memory cleared 
 
Modifies: AX, DI, CX 
;--------------------------------------------------------------- 
clear_mem: 
 : 

If it happens, in this example, that the current implementation of this procedure leaves CX = 0 on exit, 
callers MUST NOT rely on this, because it is not an intentional output of the procedure, and may be 
changed at any time during code maintenance.  However, this procedure header declares that it does not 
modify BX, DX, etc., therefore callers may rely on this.  As another example: 

 
;--------------------------------------------------------------- 
Fill an area of memory with a byte value. 
 
In: DI pointer to start of memory to be cleared 
 CX count of bytes to clear 
 BX byte value to fill into memory 
 
Out: memory filled 
 
Preserves: BX 
;--------------------------------------------------------------- 
fill_mem: 
 : 

Callers are assured that BX is preserved across calls to this function, and may rely on it.  Callers MUST 
assume that all other registers are undefined after the call. 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 62 of 66 

6.3 C-Callable Routines 
If an assembly-language routine is intended to be called from C, it MUST include a “prototype-like” 

header:  
int ut_scan16( uint16 target, uint16 *list_ptr, uint16 list_size );  
 
In: esp -> return address 
 esp+4-> target 
 esp+8-> list_ptr 
 esp+12-> list_size  
 
Out: eax: -1 Bad parameter. 
 eax: 0 - list_size-1 Index of target in list. 
 eax: list_size Target not found.  
 
The list size is limited to 64K entries (words).  



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 63 of 66 

7. Integrating 3rd Party Software 
This chapter discusses issues related to integrating 3rd party software into projects.  The goal is to 
minimize, localize, and document changes to 3rd party software so as to ease upgrading to new 
versions of 3rd party code. 

 The interface to 3rd party software should be clean and well documented.  The documentation 
should be included in the source as well as the design documentation.  At a minimum, the 
files and routines that are changed should be listed as part of the Low Level Design 
documentation.  

 3rd party software should be maintained in directories separate from project original code.  
Additions and changes which logically belong in the source directories of 3rd-party code 
should go there. 

 The original, unmodified 3rd-party source code MUST be preserved and accessible for future 
reference. 

 The original 3rd-party source, and any changes to it, will be libraried in the same manner as 
new software.  This means that the original 3rd party software must be checked into version-
control prior to any changes. 

 Changes to 3rd party software should be written in the style of the original code (where 
possible).  Any routines that are modified should have their headers updated.  Modified (or 
new headers) must contain the same type of information defined in the coding-guideline 
headers.  You should add headers to modified routines which had no header, so that the 
change is documented. Modified (or new headers) must at a minimum contain the same 
information defined in the coding-guideline headers. 

 All changes should be flagged with the following comment string, so that anyone can find all 
the changes with a simple text search, e.g. “apollo change”.  Multi-line changes should begin 
with “start apollo change” and end with “end apollo change”.  For example: 

i = 0; // apollo change: index starts at 0  
 
// start apollo change  
// The following block was modified to ...  
... new code goes here ... 
// end apollo change  



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 64 of 66 

8. Appendix: EXPORTED Macro for C 
This method may be overkill for smaller sized projects.  We include it for completeness. 

The EXPORTED macro provides a way for developers to create a single declaration/definition in a 
header file that can be used for both the definition, and the declaration of a variable.  The EXPORTED 
macro works in conjunction with a module defined macro such as ALLOC_ABC.  Since the header file in 
which the shared variable is declared is included in all the files that reference it, the variable should be 
defined using the ALLOC_xx and EXPORTED macros in order to avoid allocating storage more than 
once.    

The following is an example of a header file: 
//=========================================================================== 
Module: abc   Copyright 2004 UCSD.  All rights reserved. 
 
These are all the declarations [needed to use][private to] the abc module. 
 
Author:        Eric L. Michelsen 
Date Created:  2/16/04 
============================================================================*/ 
#ifndef INC_ABC_H 
#define INC_ABC_H  // Make sure the include happens only once  
 
// ---------------- Requires                (do not remove) ---------------  
// This is a list of dependencies on other header files 
   gi_apollo.h 
*/ 
 
// ---------------- Constants               (do not remove) ---------------  
 
// ---------------- Structures/Types        (do not remove) ---------------  
 
// ---------------- Variables               (do not remove) ---------------  
 
// This macro should be used when declaring global variables. 
   ALLOC_ABC should be defined in the C file where the variables are allocated. 
*/  
// First remove definitions if they already exist  
#undef I 
#undef EXPORTED 
// Then set the definitions the way they should be  
#ifdef ALLOC_ABC  
   #define I(x)       x 
   #define EXPORTED   // empty  
#else 
   #define I(x)       // empty  
   #define EXPORTED   extern 
#endif 
 
// This is what global variable definitions look like using the above macro: 
EXPORTED UINT32     global_x    I( = VALUE_X ); 
EXPORTED BOOLEAN    global_y    I( = TRUE ); 
 
// ---------------- Prototypes/Macros       (do not remove) ---------------  
 
#endif // INC_ABC_H  

If scalar variable initialization is necessary, it should be performed using the I(x) macro.  A template 
for use of the ALLOC_xx, EXPORTED,  and I(x) macros is provided in template.h.   

For instance, to allocate storage for the variable led_ticks in the source file pf_filter.c and declare the 
variable in pf_private.h, the ALLOC_PFPR macro is defined in pf_filter.c before including pf_private.h: 

 
// ---------------- Local Includes    (do not remove) ---------------- 
#define ALLOC_PFPR 
#include "pf_private.h" 

In pf_private.h, the EXPORTED and I(x) macros are defined, followed by the definition of led_ticks: 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 65 of 66 

 
// Remove old definitions of I and EXPORTED 
#undef I 
#undef EXPORTED 
// Set the definitions the way they should be 
#ifdef ALLOC_PFPR  
   #define I(x)       x 
   #define EXPORTED   // empty 
#else 
   #define I(x)       // empty 
   #define EXPORTED   extern 
#endif 
 
EXPORTED int32  led_ticks I(= 0); // timeout for LED 

When the code is preprocessed, since pf_filter.c defines the ALLOC_PFPR macro, the EXPORTED 
macro resolves to nothing and the I(x) macro resolves to “x”.  The definition of led_ticks in pf_filter.c 
looks like: 

 
int32 led_ticks=0; 

But in other files which include pf_private.h but do not define ALLOC_PFPR, the EXPORTED macro 
resolves to “extern” and the I(x) macro resolves to nothing.  The declaration of led_ticks looks like: 

 
extern int32 led_ticks; 

Unfortunately, the I macro only works for scalar variables, it can’t be used for composite variables.  
For composite variables, it is recommended that you emulate the I macro, as shown in the following 
examples. 

 
// To define these variables, define ALLOC_VER in a C file 
 
// First remove definitions if they already exist 
#undef EXPORTED 
#undef I 
// Then set the definitions the way they should be 
#ifdef ALLOC_VER 
   #define I(x)       x 
   #define EXPORTED   // empty 
#else 
   #define I(x)       // empty 
   #define EXPORTED   extern 
#endif 
 
EXPORTED const ver_hw cm_hw_ver  
#ifdef ALLOC_VER 
= { HW_MAJ, HW_MIN, HW_CHR }  
#endif 
; 

You can use constant structures to initialize default values in structure variables.   For example, if the 
following appears in a header file: 

 
EXPORTED const msg_addr NULL_ADDR  
#ifdef ALLOC_MSG 
= { AL_NO_COMP, 0, 0, 0 } 
#endif // ALLOC_MSG  
; 
 

You can then use NULL_ADDR in a source file: 
 
PRIVATE void sc_discover (void) 
{ 
    my_addr = NULL_ADDR; 
... 
} 



 Scientists Software Coding Guidelines 

2/17/2013 10:11  C:\Travel_Briefcase\EricSchool\Research\Coding_Guidelines.doc Page 66 of 66 

9. Stuff Needing Fixing 
Don’t pay much attention to this chapter; it needs fixing. 

9.1.1 Directory Layout 

Header files that are used by files in only one directory should be put in that directory.  Header files 
used by files in multiple directories should be stored in the lowest parent directory of all software modules 
that include them. 

Below is an example of a possible directory layout that adheres to these guidelines:    
 
src\    // common code/data library used by many programs 
    BUILD\   // make files for common source code 
    include\ 
        gi_program1.h  // globals from program 1 code 
        gi_program2.h  // globals from program 2 code 
        gi_lib1.h  // globals from lib 1 code 
    LIB1\ 
        lib1_private.h  // shared information for this module 
        lib1_main.c 
        lib1_util.c 
 
Program1\ 
    BUILD\          // program specific make files 
    include\   
        gi_mod1.h  // declarations shared between modules 
    MOD1\ 
        mod1_private.h  // private data for this module 
        mod1_main.c  // module specific code 
        mod1_util.c 
    MOD2\ 
        mod2_private.h  // private data for this module 
        mod2_main.c  // module specific code 
        mod2_util.c 
 
Program2\ 
    BUILD\   // program specific make files 
    include\   
        gi_mod1.h  // declarations shared between modules 
    MOD1\ 
        mod1_private.h  // private data for this module 
        mod1_main.c  // module specific code 
        mod1_util.c 
    MOD2\ 
        mod2_private.h  // private data for this module 
        mod2_main.c  // module specific code 
        mod2_util.c 

 


	Why Coding Guidelines?
	C Guidelines Summary
	Document Overview
	Scope
	Notation
	Terminology

	Issues
	Open Issues

	Assumptions
	Definitions, Abbreviations, Acronyms
	References
	Revision History

	‘C’ Coding Guidelines
	General Guidelines
	Templates
	Grandfathering
	No Warnings
	Lint Warnings
	Compiler Warnings
	Linker Warnings


	C++ and C99 Compatibility
	Enums As Arguments

	Code Organization
	Directory Layout
	File Layout
	File Layout: *.c Files
	Function Placement
	Source Module/File Comment Blocks
	#include

	File Layout: *.h (Header) Files

	Functions
	Function Calls
	Function Headers and Footers
	Function Naming
	Function Prototypes
	Public Function Prototypes
	Private Function Prototypes
	Function Formal Parameters


	Typedefs
	Variables
	Variable Names
	Variable Prefixes and Suffixes
	Global/Shared Definitions
	Local Definitions
	Bit Fields

	Constants & Enums
	Run Time Constants

	Statement Formatting
	Indentation
	Tabs
	Line Length
	Braces
	Comments
	Conventionalized Comments
	Operators
	Assignments within Other Statements
	White Space
	Switch Statements
	Checking Error Returns
	Return Statements
	goto
	#if Pre-Processor Directive
	#error Pre-Processor Directive
	Testing for Null Pointers
	Use sizeof() and offsetof()

	Macro Functions and Inline Functions
	Multi-statement Macros
	“inline” Functions

	Network and Inter-Processor Communication
	Packing
	Byte Order Independence
	Byte Alignment
	No Inter-Processor Bit Fields

	Diagnostic Code
	ASSERT
	Debug Code

	Tips & Gotchas
	scanf() Problems
	Huge Object Files
	Null Procedure Bodies
	'Make' can compile wrong file
	Comparing Macro Constants
	Misleading vsprintf output
	Use ‘const’ for strings instead of #define


	C++ Coding
	C++ Coding Guidelines
	Object Oriented Programming
	Type Casting

	Python Tips and Coding Guidelines
	Why Python?
	Getting Started With Python: Quick Tips
	Help on Installable Packages
	Strings, Lists, Tuples, and Sequences
	Common String Methods
	A Simple Text Filter Example
	A Simple Example: Command-line Parameters, Files, Arrays, and Plotting
	Memory Leaks

	Style Guide
	Guido van Rossum’s Style Guide
	Code lay-out
	  Encodings (PEP 263)
	Imports
	Whitespace in Expressions and Statements
	Comments
	Documentation Strings
	Version Bookkeeping
	Naming Conventions
	    Names to Avoid
	    Package and Module Names
	    Class Names
	    Exception Names
	    Global Variable Names
	    Function Names
	    Function and method arguments
	    Method Names and Instance Variables
	    Designing for inheritance

	Programming Recommendations
	References


	Optimization and Profiling

	Fortran Coding Guidelines
	Glossary
	Use Fortran 90, or Higher
	Avoid Explicit Interfaces
	Fortran Include Files
	Multi-file Modules
	A Legitimate Use of EQUIVALENCE
	Avoid Renaming MODULE Entities
	Upgrading Old F77 Code
	Freely Upgrade to Fortran 90
	Replace COMMON with MODULEs; Avoid EQUIVALENCE

	Gotchas, Tips, and Tricks
	Local Initializers Only Work Once


	Assembly Coding Guidelines
	Assembly File Headers
	Assembly-Callable Routines
	C-Callable Routines

	Integrating 3rd Party Software
	Appendix: EXPORTED Macro for C
	Stuff Needing Fixing
	Directory Layout


